Решите уравнение 2cos^2x=корень из 2 cos*(pi+x)
Решите уравнение 2cos^2x=корень из 2 cos*(pi+x)
Ответ(ы) на вопрос:
[latex]2cos^2x= \sqrt{2}cos( \pi +x)\\2cos^2x=- \sqrt{2}cosx\\2cos^2x+ \sqrt{2}cosx=0\\cosx(2cosx+ \sqrt{2})=0\\cosx=0 \; \; \; \; \; \; \; \; \; 2cosx+ \sqrt{2}=0\\x_1= \pi /2+ \pi n, n\in Z \; \; \; \; \; \; \; \; \; \; \; cosx=- \sqrt{2}/2\\........................... \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; x_2=б \frac{3 \pi }{4}+2 \pi n, n\in Z\\\\.... [/latex]
Не нашли ответ?
Похожие вопросы