Сколько существует натуральных n, меньших 1031, таких что уравнение a^2+b^2=3^n имеет решение в целых числах?
Сколько существует натуральных n, меньших 1031, таких что уравнение a^2+b^2=3^n имеет решение в целых числах?
Ответ(ы) на вопрос:
Ясно, что при n=2k система имеет решение a=3^k, b=0. Покажем, что других решений нет.
Пусть ни одно из чисел a и b не делится на 3. Покажем, что если число имеет остаток 1 или 2 при делении на 3, то квадрат этого числа имеет остаток 1 при делении на 3. Действительно, пусть a=3k+1, тогда a²=9k²+6k+1, если a=3k+2, то a²=9k²+18k+4, в обоих случаях остаток равен 1. Но сумма двух чисел с остатком 1 при делении на 3 не может нацело делиться на 3, получили противоречие.
Теперь рассмотрим случай, когда хотя бы одно из чисел a и b делится на 3. Если только одно число делится на 3, то сумма квадратов не будет делиться на 3, то есть, такой вариант невозможен. Остается случай, когда на 3 делятся оба числа. Пусть [latex]a=3^xp^2, b=3^yq^2[/latex], где p и q - натуральные числа, не делящиеся на 3. Ясно, что x
Не нашли ответ?
Похожие вопросы