Сколько существует натуральных чисел a не превосходящих 4000, для которых можно подобрать такие неотрицательные целые x,y,z, что x2(x2+2z)y2(y2+2z)=a.

Сколько существует натуральных чисел a не превосходящих 4000, для которых можно подобрать такие неотрицательные целые x,y,z, что x2(x2+2z)y2(y2+2z)=a.
Гость
Ответ(ы) на вопрос:
Гость
Выражение можно переписать как (x-y)(x+y)(x+y+2z). Если х и y имеют разную четность, то все выражение нечетное (т.к. сумма и разность чисел разной четности - нечетные).. Если x и y оба четные, то все выражение делится на 8 (каждая скобка делится на 2). Если х и y оба нечетные, то опять все выражение делится на 8 (т.к. сумма и разность нечетных чисел - четные). Если х=1, y=0, то все выражение равно 2z+1, т.е. a может быть любым нечетным числом. Если х=2, y=0, то все выражение равно 8(2+z), т.е. а может быть любым числом кратным 8, кроме 8. И вообще, все это выражение не может равняться 8, т.к.если выражение кратно 8 и хy, то x-y2 и x+y2, а значит (x-y)(x+y)(x+y+2z)4(4+2z)16. Таким образом, а может быть любым нечетным числом, а их в интервале от 1 до 4000 всего 4000/2=2000 штук, любым кратным 8, кроме самой 8, а их всего 4000/8-1=499. Итого, существует 2499 значений а.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы