Случайным образом выбирают одно из решений неравенства |х-4|≤5. Какова вероятность того, что оно окажется и решением неравенстваа) |x|≤1б) |x|≥2в) 4≤|x|≤5г) |x+4|≤5
Случайным образом выбирают одно из решений неравенства |х-4|≤5. Какова вероятность того, что оно окажется и решением неравенства
а) |x|≤1
б) |x|≥2
в) 4≤|x|≤5
г) |x+4|≤5
Ответ(ы) на вопрос:
Гость
Если задание 5-9 класс, то вряд ли вы проходили интегралы, поэтому будем считать, что мы выбираем только целые решения. Решения исходного неравенства лежать на отрезке [-1;9] решения следующих неравенств лежат на: (надеюсь, неравенства с модулем умеете решать)
а) [-1;1]
b) (-inf;-2]U[2;+inf)
в) [-5;-4]U[4;5]
г) [-9;1]
соответственно, для каждого случая находим пересечение множеств решений:
а) [-1;1]
b) [2;9]
в)[4;5]
г) [-1;1]
Считаем количество целых чисел в пересечении решений для каждого случая и делим на 11 (количество целых чисел на отрезке [-1;9]) Так мы получаем вероятность для каждого случая. Осталось только посчитать, тут, думаю, вы справитесь.
Не нашли ответ?
Похожие вопросы