Сократила ли дробь (7^53-2^37)/5

Сократила ли дробь (7^53-2^37)/5
Гость
Ответ(ы) на вопрос:
Гость
Дробь сократима, если её числитель и  знаменатель имеют хотя бы один общий делитель, отличный от единицы. [latex] \dfrac{7^{53}-2^{37}}{5} [/latex] будет сократимой, если [latex]7^{53}-2^{37}[/latex] делится на [latex]5[/latex]. А для того чтобы число делилось на [latex]5[/latex], нужно чтобы это число заканчивалось на [latex]0[/latex] или на [latex]5[/latex]. Выписывая первые степени семёрки  [latex]7^7=7 \\ 7^2=\dots 9 \\ 7^3= \dots 3 \\ 7^4=\dots 1 \\ 7^5=\dots 7 \\ 7^6=\dots 9 \\ 7^7=\dots 3 \\ 7^8=\dots 1 \\ 7^9=\dots 7[/latex]  , получаем закономерность: [latex]7^{2n}=\dots1 \\ 7^{2n+1}=\dots7 \\ 7^{2m}=\dots9 \\ 7^{2m+1}\dots3[/latex] , где [latex]n[/latex] — чётное натуральное число, [latex]m[/latex] — нечётное натуральное число. То же делаем и для степеней двойки: [latex]2^1=1 \\ 2^2=4 \\ 2^3=8 \\ 2^4=\dots6 \\ 2^5=\dots2 \\ 2^6=\dots4 \\ 2^7=\dots8 \\ 2^8=\dots6 \\ 2^9=\dots2[/latex] [latex]2^{2n}=\dots6 \\ 2^{2n+1}=\dots2 \\ 2^{2m}=\dots4 \\ 2^{2m+1}=\dots8[/latex]  , где [latex]n[/latex] — чётное натуральное число, [latex]m[/latex] — нечётное натуральное число. Т.к. [latex]53=2\cdot26+1[/latex] , то [latex]7^{53}= \dots7[/latex]. Т.к. [latex]37=2\cdot18+1[/latex] , то [latex]2^{37}= \dots2[/latex]. Значит [latex]7^{53}-2^{37}=\dots7-\dots2=\dots5[/latex]. Отсюда следует, что [latex]7^{53}-2^{37}[/latex] делится на [latex]5[/latex], и ,соответственно, дробь [latex] \dfrac{7^{53}-2^{37}}{5} [/latex] — сократима.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы