Составьте квадратное уравнение с рациональными коэффициентами, один из корней которого равен 1/(6+ корень из 2)

Составьте квадратное уравнение с рациональными коэффициентами, один из корней которого равен 1/(6+ корень из 2)
Гость
Ответ(ы) на вопрос:
Гость
Найдем простую радикальную форму данного в задании корня, для этого умножим его на сопряженное число: 1/(6+√2) * (6-√2) / (6-√2)  = (6-√2) / (6-√2)(6+√2) =(6-√2) / (36-2) = (6-√2)/34   если наше уравнение ax^2 + bx + c =0 должно быть c рац. коэфф., то кв. корень из дискриминанта должен быть кратен √2(иначе кв. корню неоткуда взяться), откуда (и из формулы корней кв. ур-я) следует, что второй корень уравнения должен быть (6+√2)/34 пусть a = 1, тогда согласно теореме Виетта (6+√2)/34  *  (6-√2)/34 = с (6+√2)/34  + (6-√2)/34 = -b c = (36-2)/(34*34) = 1/34 b = -12/34 = -6/17 и наше уравнение x^2 -6/17x + 1/34 = 0 ну или в более человеческом виде (умножаем обе части на 34) 34x^2 - 12x + 1 =0     
Не нашли ответ?
Ответить на вопрос
Похожие вопросы