Срочно помогите! Из некоторой точки пространства к плоскости треугольника, стороны которого равны 32 см, 40 см, 48 см, проведен перпендикуляр, длина которого 18 см. Основание перпендикуляра принадлежит стороне треугольника, рав...

Срочно помогите! Из некоторой точки пространства к плоскости треугольника, стороны которого равны 32 см, 40 см, 48 см, проведен перпендикуляр, длина которого 18 см. Основание перпендикуляра принадлежит стороне треугольника, равной 40 см, а две другие стороны равноудалены от данной точки. Вычислите расстояние от данной точки до других сторон треугольника.
Гость
Ответ(ы) на вопрос:
Гость
Основание перпендикуляра обозначим К. Оно лежит на пересечении биссектрисы угла А со стороной ВС, равной 40 см. Определяем длину биссектрисы:  Ва = (2/(в+с))√(вср(р-а)) =  33.9411 см. Проекции отрезков из точки S к сторонам треугольника - это перпендикуляры из точки К на эти стороны. Они равны, поэтому можно рассмотреть одну из них. В треугольнике АВК неизвестна сторона ВК - она определяется по свойству биссектрисы делить сторону: ВК = (АВ*АК)/(АВ+АК) = 16см.  Высота КМ на сторону АВ =  15.8745 см по формуле: ha = (2√(p(p-a)(p-b)(p-c)))/a . Расстояние от заданной точки S до сторон АВ и АС равно: √( 15.8745²+18²) = 24 см.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы