Сторона ромба равна 10, большая диагональ равна 16. К окружности вписанной в ромб, проведена касательная параллельная его меньшей диагонали. Найдите длину отрезка касательной заключенной между сторонами ромба.
Сторона ромба равна 10, большая диагональ равна 16. К окружности вписанной в ромб, проведена касательная параллельная его меньшей диагонали. Найдите длину отрезка касательной заключенной между сторонами ромба.
Ответ(ы) на вопрос:
при пересечении диагоналей получим прямоугольные тр-ки , где гипотенуза 10 см. один из катетов 16/2=8 , второй катет √10²-8²=√36=6 значит меньшая диагональ равна 12 см
радиус вписанной окружности r=S/2a=96/2*10=4.8см
треугольник образованный касательной параллельной меньшей диагонали подобен треугольнику образованному при проведении данной его высота есть 1/2 большей диагонали и равна 8.высота подобного треугольника равна 8-4.8(r)=3.2 ⇒коэф. подобия равен 3,2:8=0,4 искомый отрезок есть основание тр-ка соответствующий меньшей диагонали ,являющейся основанием большого тр-ка его длина равна 12*0.4=4.8см
Не нашли ответ?
Похожие вопросы