Сумма двух натуральных чисел равна 2017 если у одного из них зачеркнуть последнюю цифру то получится второе число Найдите все таки числа

Сумма двух натуральных чисел равна 2017 если у одного из них зачеркнуть последнюю цифру то получится второе число Найдите все таки числа
Гость
Ответ(ы) на вопрос:
Гость
два натуральных числа (n)  и  (2017-n); очевидно, что это не двузначные числа: 99+99 < 2017    ... и не трехзначные: 2*999 < 2017 2017:2 = 1008.5 (одно из них точно больше 1000) если обозначить меньшее из этих чисел (n), то большее можно записать как (10*n + c), где с∈{0;1;2;3;4;5;6;7;8;9} -это цифра например, (23) и (234 = 10*23 + 4); получим: 2017 - n = 10*n + c с = 2017 - 11n и осталось решить 10 уравнений: 0 = 2017 - 11n ---> n ≠ 2017:11 ∉ N 1 = 2017 - 11n ---> n ≠ 2016:11 ∉ N 2 = 2017 - 11n ---> n ≠ 2015:11 ∉ N 3 = 2017 - 11n ---> n ≠ 2014:11 ∉ N 4 = 2017 - 11n ---> n = 2013:11 = 183 5 = 2017 - 11n ---> n ≠ 2012:11 ∉ N 6 = 2017 - 11n ---> n ≠ 2011:11 ∉ N 7 = 2017 - 11n ---> n ≠ 2010:11 ∉ N 8 = 2017 - 11n ---> n ≠ 2009:11 ∉ N 9 = 2017 - 11n ---> n ≠ 2008:11 ∉ N т.е. таких чисел только два... 183 и 1834
Не нашли ответ?
Ответить на вопрос
Похожие вопросы