Сумма заданного первого нечетного числа и следующего за ним второго нечестного числа меньше 36. Сумма второго нечестного числа и удвоенного следующего за ним третьего нечетного числа больше 49. Оцените заданное первое нечестное...
Сумма заданного первого нечетного числа и следующего за ним второго нечестного числа меньше 36. Сумма второго нечестного числа и удвоенного следующего за ним третьего нечетного числа больше 49. Оцените заданное первое нечестное число.
И другая
Количество яблок, собранных Антоном в саду, больше в 15, но меньше 21. Сколько одноклассников он может угостить если каждому даст по 3 яблока.
Ответ(ы) на вопрос:
Гость
Немного недопонял вопрос задачи, но всё же попробую написать решение. Мы видим, что сумма не должна превосходить 36. Это значит, p + q(p и q - последовательные нечётные числа) ≤36. Найду эти числа, воспользовавшись методом перебора. Выпишу те пары последовательных первых и вторых нечётных чисел, сумма которых не превышает 36. Это пары:(1;3),(3;5),(5;7),(7;9),(9;11),(11;13),(13;15),(15;17),(17;19).Далее читаю вторую часть условия. На основании второго условия, сумма второго и третьего удвоенного нечётных чисел не должна быть больше 49. Произведу отбор тех чисел из приведённых пар, которые удовлетворяют этому условию.То есть произведу выборку таких пар(p;q)(p-второе нечётное число, q - третье) из вышеперечисленных, что p + 2q≤49. Этому условию удовлетворяют следующие пары:(3;5);(5;7);(7;9);(9;11);(11;13);(13;15);(15;17), поскольку 3,5,7,9,11,13,15 могут быть вторыми нечётными числами исходя из первого условия. Таким образом, только эти пары чисел могут удовлетворять приведённым двум условиям. Теперь оценим значение первого нечётного числа. Я вижу что в большинстве случаев вторые нечётные числа могут быть в роли первых предполагаемых. Значит, первое нечётное число может быть равно 3;5;7;9;11;13;15 по логике вещей. Вот такая задача )
Не нашли ответ?
Похожие вопросы