Тело движется по прямой так ,что расстояние s до него от некоторой точки a этой прям

Тело движется по прямой так ,что расстояние s до него от некоторой точки a этой прямой изменяется по закону s=0.51t^2-3t+8(v).где t - время движения в секундах.Найдите минимальное расстояние,на которое тело приблизится к точке a
Гость
Ответ(ы) на вопрос:
Гость
) Тело движется по прямой так что расстояние S от начальной точкиизменяется no закону S = 3t + t² (м), где t - время движения в секундах. Найдите скорость тела через 3 с после начала движения. Решение: Найдем функцию скорости как производную от функции расстояния по времени: Найдем значение скорости через 3 с после начала движения V = 3 + 3² = 3 + 9 = 12 м/с Ответ: 12 м/с 2) Найти точки экстремума функции f(x) = 3 + 7x - 4х² Решение: Найдем производную функции f'(x) = (3 + 7x - 4х²)' = (3)' + (7x)' - (4х²)' = 0 + 7 - 4*2x = 7- 8x Найдем критические точки          f'(x)=0  ⇔ 7-8x=0                             8x=7                               x=0,875 На числовой прямой отобразим эту точку и знаки производной полученные по методу подстановки. Например при х=0 f'(0)=7>0     +      0     - ---------!-------------            0,875               Функция возрастает на промежутке (-∞;0,875) так как производная на этом интервале числовой прямой больше нуля Функция убывает на промежутке (0,875;+∞) так как производная на этом интервале числовой прямой меньше нуля В точке х=0,875 функция имеет локальный максимум. у(0,875) =3+7*0,875+4*(0,875)² = 12,1875 Ответ: х=0,875; y=12,1875 - максимум  3) Тело движется по прямой так, что расстояние S ( в метрах) от него до точки В этой прямой изменяется по закону S(t) = 2t³ - 6t² + 6 (t - время движения в секундах). Чему будет равно ускорение, через 2 секунды движения? Решение:  Найдем функцию скорости как производную функции расстояния  V(t) =S'(t) = (2t³ - 6t² + 6)' = (2t³)' - (6t²)' + (6)' =2*3t² -6*2t +0 = 6t² -12t (м/с) Найдем функцию ускорения как производную скорости по времени   a(t) = V'(t) = (6t² - 12t)' = (6t²)' - (12t)' = 6*2t  -12 =12t - 12  (м/с²) Найдем ускорение тела через 2 секунды после начала движения а(2) =12*2-12=12 м/с² Ответ 12 м/с² 4) Дана функция f(x) = 2x² - х + 1. Найти координаты точки ее графика, в котором угловой коэффициент касательной к нему равен 7. Решение: Угловой коэффициент касательной функции в точке равен производной функции в этой точке Найдем производную функции f'(x) = (2x² - х + 1)' = 4x-1 Поскольку угловой коэффициент касательной равен 7 то можно записать, что              4х - 1 = 7                   4х = 8                     х = 2 f(2) = 2*2² -2+1 = 8  - 1 =7 Ответ: х=2; у=7   5) Исследовать функцию на выпуклость и точки перегиба f(x) = 2х³+ 9x² - 24x.  Решение: Найдем первую производную функции f'(x) = (2х³ + 9x² - 24x)'  =2*3x²+9*2x-24 = 6x² + 18x - 24 Найдем вторую производную функции f"(x) = (6x² + 18x - 24)' = 6*2x + 18 - 0 =12x+18 Найдем критические точки f"(x)=0  ⇔ 12x+18 =0                        12x = -18                            x=-1,5 На числовой прямой отобразим эту точку и знаки второй производной      -           0            + ---------------!----------------                -1,5 Функция вогнута вниз на интервале х∈(-1,5;+∞) так как вторая производная больше нуля Функция выпукла вверх на интервале х∈(-∞;-1,5) так как вторая производная меньше нуля В точке  х=-1,5 функция имеет точку перегиба y(-1,5) = 2(-1,5)³+ 9(-1,5)² - 24(-1,5) = 49,5 Ответ: вогнута вниз на интервале х∈(-1,5;+∞) ; выпукла вверх на интервале х∈(-∞;-1,5);х=-1,5 y=49,5 точка перегиба 
Не нашли ответ?
Ответить на вопрос
Похожие вопросы