Точки A 3; -2 , B -2;1 и C 4; 0 являются вершинами треугольника ABC. Составить уравнение высоты треугольника, опущенной из точки А на сторону ВС. Определить координаты точки Н – основания высоты АН треугольника АВС. Сделать чер...

Точки A 3; -2 , B -2;1 и C 4; 0 являются вершинами треугольника ABC. Составить уравнение высоты треугольника, опущенной из точки А на сторону ВС. Определить координаты точки Н – основания высоты АН треугольника АВС. Сделать чертеж.
Гость
Ответ(ы) на вопрос:
Гость
Уравнение ВС: [latex] \frac{x+2}{6}= \frac{y-1}{-1} .[/latex] Преобразуем его в общее уравнение: -х-2 = 6у-6. Получаем х+6у-4 = 0. Угловой коэффициент этой прямой равен к = -А/В. Угловой коэффициент перпендикулярной прямой равен к =-1/к = В/А. Тогда уравнение перпендикулярной прямой имеет вид -Вх+Ау+С = 0. Получаем уравнение АН: -6х+у+С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А(3; -2).Получаем: -6*(-3) – 2 + C = 0, следовательно С = 18+2 = 20.Итого: искомое уравнение: -6х +у + 20 = 0.Или с положительным коэффициентом перед х:АН: 6х-у-20 = 0.Для определения координат точки Н – основания высоты АН треугольника АВС - надо решить систему уравнений прямой ВС и АН: х+6у-4 = 0,            х+6у-4 = 0, 6х-у-20 = 0|x6 = 36x-6y-120 = 0.                           ____________                          37x      -124 = 0.                       x = 124/37 ≈ 3,351351.    y = 6x - 20 = (6*124)/37 - (20*37)/37 = ( 744 - 740)/37 = 4/37 ≈ 0,108108. Рисунок треугольника и высоты дан в приложении.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы