Трапеция CDEK вписана в окружность (DE//CK), EK=5 см, KD=12 см, причем KD перпендикулярно CD. Найдите длину окружности.

Трапеция CDEK вписана в окружность (DE//CK), EK=5 см, KD=12 см, причем KD перпендикулярно CD. Найдите длину окружности.
Гость
Ответ(ы) на вопрос:
Гость
Окружность можно описать только около равнобедренной трапеции. Значит CD = EK = 5. Треугольник CDK - прямоугольный( по условию). СК = кор(CDкв + DKкв) = кор(25 + 144) = 13. Центр описанной окружности располагается на пересечении срединных перпендикуляров ко всем сторонам трапеции. Пусть А - середина CD, а В - середина СК. АВ - средняя линия прям. тр-ка CDK. Значит АВ // DK, и значит АВ перпенд. CD. Точка В уже лежит в середине стороны СК, а срединные перпендикуляры к сторонам DE и ЕК также проходят через точку В. Значит В - центр данной описанной окружности, а СК = 13  - диаметр этой окружности. Длина описанной окружности: L = Пd = 13П см. Ответ: 13П см.(примерно 40 см)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы