Треугольник ABC равнобедренный (AB=BC),DF параллельно AC,CF параллельно AB,AB=13,BD=7,AC=10. 1)Докажите, что треугольник ADE=треугольникуCED. 2)Докажите, что треугольник ECF подобен треугольнику ABC 3)Найдите EF. 4)Найдите высо...

Треугольник ABC равнобедренный (AB=BC),DF параллельно AC,CF параллельно AB,AB=13,BD=7,AC=10. 1)Докажите, что треугольник ADE=треугольникуCED. 2)Докажите, что треугольник ECF подобен треугольнику ABC 3)Найдите EF. 4)Найдите высоту треугольника ABC,опущенную на боковую сторону. 5)Найдите отношение площадей треугольников ADE и DCF.
Гость
Ответ(ы) на вопрос:
Гость
1) Четырехугольник ADEC - трапеция (DE ║ AC). ∠BAC = ∠BCA ⇒ трапеция равнобедренная, значит, AD = CE = BA - BD = 6. В трапеции ∠ВАС = ∠BCA  ⇒ и ∠ADE = ∠CED. ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED). 2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE. ∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам. 3) Т.к.  ΔECF подобен ΔАВС, то EF/AC = CE/BC EF/10 = 6/13  ⇒ EF = 60/13 4) Пусть h - высота треугольника АВС, опущенная на боковую сторону. Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр 13h/2 = √(18 · 5 · 5 · 8) 13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60 h =120/13 5) AC║DF, значит, расстояние от точки А до DE  и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований. Sade/Sdcf = DE/DF DF = AC = 10 как противолежащие стороны параллелограмма, DE = DF - EF = 10 - 60/13 = 70/13 Sade/Sdcf = (70/13) / 10 = 7/13
Не нашли ответ?
Ответить на вопрос
Похожие вопросы