Треугольник CDE задан координатами своих вершин: С(2;2),D(6;5),E(5;-2). a) Докажите, что ▲CDE-равнобедренный; Б) Найдите биссектриссу,проведенную из вершины С Пожалуйста помогите решить,срочно надо:)

Треугольник CDE задан координатами своих вершин: С(2;2),D(6;5),E(5;-2). a) Докажите, что ▲CDE-равнобедренный; Б) Найдите биссектриссу,проведенную из вершины С Пожалуйста помогите решить,срочно надо:)
Гость
Ответ(ы) на вопрос:
Гость
чтобы доказать равнобедренность треугольника, можно найти длины векторов (сторон треугольника)) векторCD {4; 3}    ---> |векторCD| = √(16+9) = 5 векторСЕ {3; -4}   ---> |векторСЕ| = √(9+16) = 5 векторDE {-1; -7}  ---> |векторDE| = √(1+49) = √50 = 5√2 т.к. CD=CE, биссектриса из вершины С будет и высотой и медианой... ее можно найти и по т.Пифагора √(25-25/2) = √(25/2) = 5/√2 = 5√2 / 2 или методом координат... середина отрезка ED --точка Т-- будет иметь координаты Т((5+6)/2; (5-2)/2) ---> T(5.5; 1.5) векторСТ {3.5; -0.5} |векторСТ| = √((7/2)² + (1/2)²) = √(50/4) = 5√2 / 2
Не нашли ответ?
Ответить на вопрос
Похожие вопросы