У трехзначного числа поменяли местами две последние цифры и сложили получившеся число с исходным. В результате получилось число 1187. Найдите все такие числа и объясните, почему нет других

У трехзначного числа поменяли местами две последние цифры и сложили получившеся число с исходным. В результате получилось число 1187. Найдите все такие числа и объясните, почему нет других
Гость
Ответ(ы) на вопрос:
Гость
Пусть первое число записывалось как abc, а второе как acb. Тогда первое число равно 100a+10b+c, а второе равно 100a+10с+b. Легко видеть, что a=5, так как при a<5 сумма меньше 1000, а при a>6 сумма не меньше 1200. Таким образом,  500+10b+c+500+10c+b=1187 10b+b+10c+c=187 11(b+c)=187 b+c=17 Таким образом, одна из цифр b и c равна 8, а другая равна 9. Следовательно, единственно возможная пара чисел – 589, 598.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы