Угол между высотой и биссектрисой , проведённым из одной вершины тупоугольного равнобедренного треугольника , равен 36 градусов . Определите углы треугольника.

Угол между высотой и биссектрисой , проведённым из одной вершины тупоугольного равнобедренного треугольника , равен 36 градусов . Определите углы треугольника.
Гость
Ответ(ы) на вопрос:
Гость
Треугольник АВС тупоугольный, равнобедренный. Значит большая сторона (АС) - основание, так как углы при основании равны, а в треугольнике не может быть двух тупых углов. Проведем биссектрису АК и высоту АН  из угла А при основании треугольника. (проводить их из вершины тупого угла на основание нет смысла, поскольку высота и биссектриса в этом случае равны (равносторонний треугольник). Высота в нашем случае падает на продолжение противоположной боковой стороны ВС. Итак, имеем: <НАК =36°(дано), <АНС=90°, <КАС=0,5*<ВСА (АК-биссектриса <ВАС, а <ВАС=<ВСА=
Не нашли ответ?
Ответить на вопрос
Похожие вопросы