В одной урне 6 белых и 3 черных шаров, а в другой 3 белых и 7 черных шаров. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 3 шаров. Найти вероятнос...
В одной урне 6 белых и 3 черных шаров, а в другой 3 белых и 7 черных шаров. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну.
После этого из второй урны также случайно вынимают 3 шаров. Найти вероятность того, что все шары, вынутые из второй урны белые
Ответ(ы) на вопрос:
Гость
Это задача на формулу полной вероятности.
Выбираем гипотезы.
H₁- три шара, вынутых из первой корзины белые
Н₂- три шара, вынутых из первой корзины черные
Н₃- три шара, вынутых из первой корзины :белый и два черных
Н₄-три шара, вынутых из первой корзины : два белых и один черный
р(Н₁)=С³₆/С³₉=20/84
р(Н₂)=С³₃/С³₉=1/84
р(Н₃)=С¹₆С²₃/С³₉=18/84
р(Н₄)=С²₆С¹₃/С³₉=45/84
р(Н₁)+р(Н₂)+р(Н₃)+р(Н₄)=1
Гипотезы выбраны верно.
А-событие, состоящее в том, что из второй урны вынуты три белых шара.
р(А/Н₁)=С³₆/С³₁₂=20/220
р(А/Н₂)=С³₃/С³₁₂=1/220
р(А/Н₃)=С³₄/С³₁₂=4/220
р(А/Н₄)=С³₅/С³₁₂=10/220
По формуле полной вероятности:
р(А)=р(А/Н₁)·р(Н₁)+р(А/Н₂)·р(Н₂)+р(А/Н₃)·р(Н₃)+р(А/Н₄)·р(Н₄)=
=(20/220)·(20/84)+(1/220)·(1/84)+(4/220)·(18/84)+(10/220)·(45/84)=
=(400+1+72+450)/(220·84)=923/18480≈0,05
Не нашли ответ?
Похожие вопросы