В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четывре раза больше площади треугольника BOC.

В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четывре раза больше площади треугольника BOC.
Гость
Ответ(ы) на вопрос:
Гость
Диагонали параллелограмма делятся при пересечении пополам. Без проблем можно доказать, что тр-к АВО = тр-ку СОD, а тр-к ВОС=тр-ку АОD по двум сторонам и углу между ними. Рассмотрим тр-к АОВ и ВОС, площадь тр-ка равна половине произведения основания на высоту. Основания этих тр-ков равны, а высота общая. Значит их площади равны. Из выше сказанного следует, что площади всех четырех труугольников равны между собой. Т.е. площадь параллелограмма в 4 раза больше площади тр-ка.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы