В правильном четырехугольной пирамиде высота равна 12см, а высота боковой грани-15 см. найти объем пирамиды

В правильном четырехугольной пирамиде высота равна 12см, а высота боковой грани-15 см. найти объем пирамиды
Гость
Ответ(ы) на вопрос:
Гость
1)Находим радиус вписанной в основание окружности:корень из 15^2-12^2=корень из 81=9; 2)Т.к высота в правильной пирамиде падает в центр основания, то найдя диаметр вписанной в основание окружности, мы сможем найти сторону основания:9+9=18-диаметр=стороне основания; 3)Находим площадь основания:1/2*18*18=162; 4)Рассчитываем объем пирамиды: V=1/3*Sосн.*высоту пирамиды=>V=1/3*162*12=648.  
Гость
по теореме пифогора можно найти половину диагонали основания(квадрата). х-половина диагонали квадрата х^2=15^2-12^2 x^2=225-144 x^2=81 x1=9   х2=-9--не удовлитворяет значит х=9 находим диагональ квадрата,чтобы найти сторону. d=2*9=18 рассматриваем прямоугольный равноедренный треугольник часть квадрата,т е треуг АСД,пусть сторона будет n,тогда по теореме пифагора n^2+n^2=18^2 n=9---сторона квадрата,нахдим площадь квадрата S=n^2=9^2=81 легко теперь найти объем по формуле,которую ты должна знать, V=1/3*S*H=1/3*81*12= 324. вроде все
Не нашли ответ?
Ответить на вопрос
Похожие вопросы