В правильной треугольной пирамиде боковые грани наклонены к плоскости основания под углом 60 градусов. Расстояние от центра основания до боковой грани равно 2 см. найдите площадь боковой поверхности пирамиды. Помогите решить. Е...

В правильной треугольной пирамиде боковые грани наклонены к плоскости основания под углом 60 градусов. Расстояние от центра основания до боковой грани равно 2 см. найдите площадь боковой поверхности пирамиды. Помогите решить. Если можно, то с рисунком.
Гость
Ответ(ы) на вопрос:
Гость
Пусть дана правильная треугольная пирамида SABC. Центр основания - точка О пересечения медиан треугольника основания. В боковой грани SСB проведём апофему SД. Тогда двугранный угол наклона боковой грани к основанию измеряется плоским углом SДО. Расстояние от центра основания до боковой грани - это перпендикуляр ОК  на апофему SД. Высота пирамиды SО = Н = 2/sin(90°-60°) = 2/0,5 = 4 см. Отрезок ОД = 2/sin60° = 2*2/√3 = 4/√3 см. Медиана основания АД (она же и высота и биссектриса угла основания) равна трём отрезкам ОД по свойству медиан. АД = 3*(4/√3) = 12/√3 = 4√3 см. Сторона основания а = АД/cos30° = (4√3)/(√3/2) = 8 см. Периметр основания Р = 3а = 3*8 = 24 см. Апофема А = Н/sin60° = 4/(√3/2) = 8/√3 см. Боковая поверхность пирамиды равна:  Sбок = (1/2)Р*А = (1/2)*24*(8/√3) = 96/√3 = 32√3 см².
Не нашли ответ?
Ответить на вопрос
Похожие вопросы