В правильной треугольной пирамиде со стороной основания 30 и боковым ребром 25 через точку, делящую боковое ребро в отношении 2:3 ( считая от верши...

В правильной треугольной пирамиде со стороной основания 30 и боковым ребром 25 через точку, делящую боковое ребро в отношении 2:3 ( считая от верши...В правильной треугольной пирамиде со стороной основания 30 и боковым ребром 25 через точку, делящую боковое ребро в отношении 2:3 ( считая от вершины пирамиды), проведена плоскость, параллельная противоположной боковой грани. Найдите площадь полученного сечения.
Гость
Ответ(ы) на вопрос:
Гость
Полученное сечение - равнобедренный треугольник, подобный треугольнику боковой грани с основанием 30 и боковыми сторонами по 25. Площадь треугольника боковой грани Sб = (1/2)(√(25²-(30/2)²))*30 = = (1/2)√(625-225)*30 = (1/2)*20*30 = 300 кв.ед. Коэффициент подобия треугольника в сечении и боковой грани равен 2/5. Площади подобных фигур относятся как квадрат коэффициента подобия. Отсюда площадь сечения равна: S = (2/5)²*Sб = (4/25)*300 = 48 кв.ед.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы