В прямоугольном треугольнике с гипотенузой, равной 5ед., катеты равны a и b. Найдите a^3-b^3, если катет a на 2 единицы больше катета b
В прямоугольном треугольнике с гипотенузой, равной 5ед., катеты равны a и b. Найдите a^3-b^3, если катет a на 2 единицы больше катета b
Ответ(ы) на вопрос:
По теореме Пифагора [latex] a^2+b^2=5^2 \\ a^3-b^3 = (a-b)(a^2+ab+b^2) = \\ (a-b)(25+ab) = (a-b)25+ab(a-b) = \\ (b+2-b)*25+(b+2)b*(b+2-b) = 50+2b(b+2) \\ (b+2)^2+b^2=25 \\ 2b^2+4b-21=0 \\ a^3-b^3 = 50+2b^2+4b = 2b^2+4b-21+71 = 0+71 = 71[/latex]
Ответ [latex] 71[/latex]
Не нашли ответ?
Похожие вопросы