В треугольнике ABC , AB=BC отрезки ВС и BA продолжены за вершины с и a на продолжениях отмечены точки E и D соотвецтвенно известно что DE||AC СРАВНИТЕ ОТРЕЗКИ CE AD
В треугольнике ABC , AB=BC отрезки ВС и BA продолжены за вершины с и a на продолжениях отмечены точки E и D соотвецтвенно известно что DE||AC СРАВНИТЕ ОТРЕЗКИ CE AD
Ответ(ы) на вопрос:
Гость
Пусть СЕ =х , тогда ВЕ= 32-х, АД= 16-х ВД= 24-(16-х) = 8+х. Треугольники ВДЕ и АВС подобны по двум углам ( угол в -общий , угол ВЕД= углу С как соответственные при параллельных ДЕ И АС и секущей ВС) Значит ВД/ ВА = ВЕ/ВС тоесть (8+х) : 24= (32-х) :4 , решаем эту пропорцию (8+х)* 32= (32-х)* 24 ( 8+х)* 4= (32-х)* 3 32 +4х= 96 -3х 7х=64 х= 9 целых 1/7 ВД= 8+9 целых 1/7= 17 целых 1/7 Также пропорциональны стороны ВД : АВ= ДЕ : АС подстави данные 17 целых 1/7 : 24= ДЕ : 28, ДЕ = 17 целых 1/7 * 28 :24 = 20 смОтвет 20см
Не нашли ответ?
Похожие вопросы