В треугольнике АВС биссектриса ВЕ и медиана АD перпендикулярны и имеют одинаковую длину, равную 4. Найти стороны треугольника АВС.

В треугольнике АВС биссектриса ВЕ и медиана АD перпендикулярны и имеют одинаковую длину, равную 4. Найти стороны треугольника АВС.
Гость
Ответ(ы) на вопрос:
Гость
Пусть точка О - точка пересечения АД и ВЕ. В ΔАВД по условию ВО является биссектрисой и высотой, значит и медианой АО=ОД=АД/2=2, а этот треугольник  - равнобедренный АВ=ВД. ВС=2ВД=2АВ По свойству биссектрисы ВС/ЕС=АВ/АЕ 2АВ/ЕС=АВ/АЕ ЕС=2АЕ АС=АЕ+ЕС=3АЕ Проведем из вершины В прямую, параллельную АС, до пересечения с продолжением медианы АД в точке М. ΔАДС и ΔМДВ равны по стороне (ВД=ДС) и 2 прилежащим углам (вертикальные углы <АДС=<МДВ, накрест лежащие углы <МВД=<АСД). Значит АС=ВМ=3АЕ. ΔАОЕ и ΔМОВ подобны по 2 углам: АО/ОМ=ЕО/ВО=АЕ/ВМ=1/3 ЕО/ВО=1/3 ВО=3ЕО ВЕ=ВО+ЕО=4ЕО ЕО=ВЕ/4=4/4=1 ВО=3 Из прямоугольного ΔАОВ: АВ²=АО²+ВО²=4+9=13 сторона АВ=√13 сторона ВС=2√13 Из прямоугольного ΔАОЕ: АЕ²=АО²+ЕО²=4+1=5, АВ=√5 сторона АС=3√5 Ответ: √13, 2√13 и 3√5
Не нашли ответ?
Ответить на вопрос
Похожие вопросы