В6. В ромб со стороной 25 вписана окружность. Найдитерадиус окружности, если диагонали ромба относятся как 3:4.
В6. В ромб со стороной 25 вписана окружность. Найдите
радиус окружности, если диагонали ромба относятся как 3:4.
Ответ(ы) на вопрос:
Если диагонали относятся как 3:4, то так же соотносятся и их половины. Представим прямоугольный треугольник, образованный двумя половинами диагоналей и одной стороной ромба. Искомый радиус будет высотой этого треугольника. Прямоугольный треугольник, имеющий соотношение катетов 3:4, имеет их отношение с гипотенузой 3:4:5 (т.н. Пифагоров треугольник). Значит, если гипотенуза 25, то катеты - 20 и 15. Падающая из прямого угла высота делит гипотенузу на две части, которые относятся друг к другу как прилежащие к ним катеты, т.е. их длины составят 4/7*25=100/7 и 3/7*25=75/7. Теперь рассмотрим треугольник, образованный высотой (назовём её R), меньшим катетом 15 и прилежащей к нему частью гипотенузы 75/7. По теореме Пифагора: 15^2 = R^2 + (75/7)^2 Выразим R^2, приведём к общему знаменателю: R^2 = 225 - 5625/49=(11025-5625)/49=5400/49 То есть R будет равно корню из этого числа. Корень получается некрасивым, возможно, в расчётах ошибка, но в целом ход решения такой
Не нашли ответ?
Похожие вопросы