Все натуральные числа от 1 до 1000 включительно разбиты на две группы: чётные и нечетные. Пусть a — сумма сумм цифр чисел в первой группе,b — во второй. Найдите b−a .

Все натуральные числа от 1 до 1000 включительно разбиты на две группы: чётные и нечетные. Пусть a — сумма сумм цифр чисел в первой группе,b — во второй. Найдите b−a .
Гость
Ответ(ы) на вопрос:
Гость
Решений тут может быть несколько Возьмем умозрительное Значит нам от нечетных надо отнять четные и это можно представить так S = 1-2+3-4+5-6+...+997-998+999-1000 = = (1-2)+(3-4)+(5-6)+...+(997-998)+(999-1000) = = (-1)+(-1)+(-1)+...+(-1)+(-1) = и этих (-1) у нас 1000/2=500  = 500 * (-1) = -500
Не нашли ответ?
Ответить на вопрос
Похожие вопросы