Высота, проведенная из вершины прямого угла прямоугольного треугольника равна 6 см и делит гипотенузу на отдельные отрезки, один из которых больше другого на 5 см, найдите стороны

Высота, проведенная из вершины прямого угла прямоугольного треугольника равна 6 см и делит гипотенузу на отдельные отрезки, один из которых больше другого на 5 см, найдите стороны
Гость
Ответ(ы) на вопрос:
Гость
Назовем треугольник как ΔАВС, а высоту как АС (∠А=90°). Обозначим СК как х, а КВ то гда как х+5. Есть теорема, о том, что высота равна среднему геометрическому проекций катетов на гипотенузу, иначе: АК=[latex] \sqrt{CK * KB} [/latex] 6=[latex] \sqrt{ x^{2} +5x} [/latex] Чтоб его решить, возведем обе части в квадрат(вообще, надо учитывать, при каких х²+5х больше нуля, но пока это неважно): 36=х²+5х х²+5х-36 D=25+144=169 - два корня [latex] x_{1,2}= \frac{-5+/-13}{2} [/latex] х₁=4  х₂=-9 - не подходит по усл. ⇒СК=4, а КВ=4+5=9. Тогда СВ=13 Найдем остальные стороны по теореме Пифагора, так как ΔКАВ и ΔСАК - прямоугольные(по опр. высоты): АВ²=АК²+КВ² АВ²=36+81 АВ=√117 СА²=СК²+АК² СА²=16+36 СА=√52 СА=2√13 Ответ: 2√13, √117, 13
Не нашли ответ?
Ответить на вопрос
Похожие вопросы