(X+9)^2*(x+6)-5 Найти наибольшее значение на промежутке [-10;-8] помогите пожалуйста
(X+9)^2*(x+6)-5 Найти наибольшее значение на промежутке [-10;-8] помогите пожалуйста
Ответ(ы) на вопрос:
Сначала раскроем скобки (чтобы не мучаться со взятием производной от произведений) Получаем (x+9)^2*(x+6)-5=(x^2+18x+81)(x+6)-5=x^3+24x^2+189x+481 Теперь возьмем производную от этой функции, получим: f'(x)=3x^2+48x+189 Теперь найдем значение производной на границе нашего отрезка. Получаем: f'(-10)=3*100-480+189=9 f'(-8)=3*64+48*(-8)+189=-3 Производная сменила знак, значит на это интервале она будет принимать значение 0 и в этой точке будет максимум функции, потому что если производная положительна, функция будет расти, если отрицательна, убывать. Значит функция будет расти от точки x до точки x1, где f'(x1)=0, а после нее будет убывать до точки где x=-8. Найдем решения уравнения f'(x)=0, т.е 3x^2+48x+189=0 Обычно квадратное уравнение, найдем D D=48^2-4*3*189= 2304-2268=36 Найдем решения уравнения: [latex]x_{1.2}=\frac{-48+_-\sqrt36}{6}=\frac{-48+_-6}{6}[/latex] значит x1=-9, x2=-7, но т.к x2 не входит в отрезок [-10;-8], то нам подходит только одно решения x1=-9 Ответ: Максимальное значение функции достигается в точке x=-9 и равно оно -5. Примечание: Вообще можно заметить, что (x+9)^2 всегда положительное, а (x+6) будет всегда отрицательном на рассматриваемом промежутке. Значит чтобы функция достигла максимального значения необходимо просто сделать так, чтобы (x+9)^2*(x+6) было равно нулю. И здесь получаются 2 варианта: 1. х=-6 не подходит так как не пренадлежит отрезку [-10;-8] 2. x=-9, подходит. Но этот метод будет не универсальным, а пригодным только для этого примера.
Не нашли ответ?
Похожие вопросы