Являются ли функции у=f(x) и у=g(x) взаимно-обратными если f(x)=3x+5, g(x)=1/3x-5/3
Являются ли функции у=f(x) и у=g(x) взаимно-обратными если f(x)=3x+5, g(x)=1/3x-5/3
Ответ(ы) на вопрос:
g(f(x))=3(1/(3x) - 5/3)+5=1/(x) -5 +5=1/x
Да, являются. Чтобы написать функцию обратную данной, нужно в ней х поменять на у, а у на х. У тебя было f(x)=3x+5 её можно записать как y=3x+5. Пишем обратную ей функцию, производя замену переменных: x=3y+5. Теперь выражаем из полученного уравнения у: 3y=x-5 ; y=x-5\3. Теперь мы можем почленно поделить числитель дроби на знаменатель, получим: y=x\3 (это то же самое что и 1\3*x) - 5\3. Таким образом мы получили функцию g(x). Значит функции f(x) и g(x) обратные.
Надеюсь помогла))) и объяснение не слишком запутанное))
Не нашли ответ?
Похожие вопросы