Задача на оптимизацию.  В прямоугольном треугольнике с катетами 36 и 48 на гипотенузе взята точка. Из нее проведены прямые пераллельные катетам. Получился прямоугольник, вписанный в данный треугольник. Где на гипатенузе нужно в...

Задача на оптимизацию.  В прямоугольном треугольнике с катетами 36 и 48 на гипотенузе взята точка. Из нее проведены прямые пераллельные катетам. Получился прямоугольник, вписанный в данный треугольник. Где на гипатенузе нужно взять точку, чтобы площадь такого прямоугольника была наибольшей?
Гость
Ответ(ы) на вопрос:
Гость
я хз что такое оптимизация, но задача решается вот так: строим это дело, гипотенузу маленького правого треугольника обозначаем за х, а его катет тоже самое что и сторона прямоугольника за Н, тогда путем несложных действий выражаем все стороны через эти две буквы и получаем уравнение: (60-х)^2-(48-Н)^2=(36-корень из х^2-Н^2)^2 из него находим что х=1,25Н S= (36-0,75H)H S'=36-1,5H=0 H=24 x=30 а так как гипотенуза 60, то точка это середина
Не нашли ответ?
Ответить на вопрос
Похожие вопросы