Желательно подробнее объяснить под буквой "б") а) решить уравнение (6sin^3x-sin^2x-sinx)/√tgx=0 б) найти корни, принадлежащие отрезку [-π;π/2]

Желательно подробнее объяснить под буквой "б") а) решить уравнение (6sin^3x-sin^2x-sinx)/√tgx=0 б) найти корни, принадлежащие отрезку [-π;π/2]
Гость
Ответ(ы) на вопрос:
Гость
a) (6sin^3-sin^2x-sinx)/√tgx=0 ОДЗ: tgx>0, т.к. знаменатель не равен 0, а подкоренное выражение должно быть больше или равно нуля, следовательно, общее решение будет tgx>0 x>Πk, k€Z Решение: 6sin^3-sin^2x-sinx=0 Пусть t=sinx, где t€[-1;1], тогда 6t^3-t^2-t=0 t(6t^2-t-1)=0 Решим распадающиеся уравнение: 1) t=0 2) 6t^2-t-1=0 D=1+24=25 t1=1-5/12=-1/3 t2=1+5/12=1/2 Вернёмся к замене: 1) sinx=0 x=Πn, n€Z - посторонний корень, т.к. tgx>0 2) sinx=-1/3 x=(-1)^m arcsin(-1/3)+Πm, m€Z 3) sinx=1/2 x1=Π/6+2Πr, r€Z x2=5Π/6+2Πr, r€Z Ответ: (-1)^m arcsin(-1/3)+Πm, m€Z; Π/6+2Πr, 5Π/6+2Πr, r€Z
Не нашли ответ?
Ответить на вопрос
Похожие вопросы