Знайти найменше та найбільше значення функції f(x)=2x²-x⁴+1 на проміжку [-2;0]
Знайти найменше та найбільше значення функції f(x)=2x²-x⁴+1 на проміжку [-2;0]
Ответ(ы) на вопрос:
Гость
Находим производную функции f(x)=2x²-x⁴+1.
y ' = -4x³ + 4x = -4x(x² - 1).
Приравниваем производную нулю:
-4x(x² - 1) = 0.
Отсюда получаем критические точки:
х₁ = 0,
x² - 1 = 0
x² = 1.
х₂ = 1,
х₃ = -1.
На проміжку [-2;0] имеется 2 критические точки:
х = -1 и х = 0.
Исследуем значение производной вблизи этих точек.
х = -1.5 -1 -0.5 0 0.5
y '=-4x³+4x 7.5 0 -1.5 0 1.5.
В точке х = -1 переход от + к -, значит, это максимум,
а в точке х = 0 переход от - к +, значит, это минимум.
Не нашли ответ?
Похожие вопросы