Дипломная работа: Аффинные преобразования евклидовой плоскости в сопряж нных комплексных координатах
1) неподвижных точек не существует;
2) неподвижная точка единственная;
3) неподвижных точек бесконечно много.
Рассмотрим каждый из этих случаев.
1.Неподвижных точек не существует тогда и только тогда, когда для коэффициентов преобразования выполняется условие: Преобразовав второе условие системы, получим . (9)
Выполнимость этой системы и является условием того, что для данного аффинного преобразования неподвижных точек не существует.
2. Неподвижная точка единственна тогда и только тогда, когда
, то есть (10)
3. Неподвижных точек бесконечно много тогда и только тогда, когда выполняется условие что равносильно системе
(11)
Возьмём условие неподвижности точки: (12)
и рассмотрим два случая:
1) Пусть с≠0 , тогда умножим (12) на с , получим: . Воспользовавшись системой (11), получим равенство:
, (13)
где коэффициенты при z и сопряжены, а свободный член является действительным числом, следовательно, равенство (13) при условии (11) задаёт прямую неподвижных точек.
2) Пусть теперь с=0 , тогда (12) представится в виде . Выразим отсюда z : , откуда Приравняем правые части и получим равенство , что равносильно условию . Поделим на z ≠0, в результате чего получим . То есть условие (11) задаёт прямую неподвижных точек (12), которая называется осью аффинного преобразования . Если такая прямая есть, то аффинное преобразование называется родством .
Если а=1 , то - единственная неподвижная точка, и аффинное преобразование называется центроаффинным .
Если b=0 и c≠0 , то аффинное преобразование является параллельным переносом .
Если b=0 и c=0 , то аффинное преобразование является тождественным .
7.2. Двойные прямые аффинных преобразований
Найдём условие, при котором прямая при аффинном преобразовании (2) перейдёт сама в себя, то есть будет являться инвариантом аффинного преобразования.
Возьмём уравнение прямой (3), которая при аффинном преобразовании перейдёт в прямую . Для того, чтобы прямая (3) перешла сама в себя, необходимо выполнение следующих условий: где R. (14) Преобразуем первые два равенства системы (14) к виду Приравняем теперь первые два равенства и после преобразования получим: представим первое равенство системы в виде совокупности двух условий теперь эту систему можно представить как совокупность двух систем (15) Рассмотрим каждую систему полученной совокупности отдельно.
1) Первая система совокупности приводится к виду и теперь уже она может быть представлена в виде совокупности двух систем Отметим, что если для прямой (3) выполняется первая система, то нет и самой прямой (3). Решая вторую систему, также получим, что нет самой прямой (оба коэффициента равны нулю). Таким образом получили, что первая система совокупности (15) не имеет решений.
2) Рассмотрим вторую систему совокупности (15) . Выразим из второго равенства системы коэффициент q и воспользуемся тем, что (из второго равенства (14)), тогда рассматриваемая система будет выглядеть следующим образом:
(16)
Преобразуем отдельно каждое равенство системы (16).
А) Первое равенство системы после некоторых преобразований примет вид , откуда и выполнение этого условия является очевидным, следовательно, первое равенство системы (16) ничего существенного нам не давало.
Б) Рассмотрим теперь второе равенство, преобразуем его правую часть , тогда полученное соотношение на коэффициенты прямой (2): (17) является условием того, что прямая (3) - двойная прямая аффинного преобразования (2).
Докажем, что если для коэффициентов прямой (3) p и q верно равенство (17), то она является двойной прямой аффинного преобразования с коэффициентами a , b , c и определителем .Возьмём прямую . При аффинном преобразовании с коэффициентами a , b , c она перейдёт на прямую. Покажем, что будут выполняться равенства где k – коэффициент пропорциональности. Найдём k из последнего равенства системы . Подставим вместо q его выражение через коэффициентыаффинного преобразования и коэффициент р , упростим выражение и получим . Очевидно, что при таком k верны и два первых уравнения системы, следовательно, прямая является двойной, что и требовалось доказать.
Глава II. Частные виды аффинных преобразований в сопряжённых комплексных координатах
§1. Преобразование подобия
Преобразованием подобия (или подобием ) называется преобразование, которое каждые две точки P иQ отображает в такие две точки P ’ иQ ’ , что P ’ Q ’= k · PQ , где k - постоянное действительное положительное число, называемое коэффициентом подобия . [2]
Введём в рассмотрение аффинное преобразование (2). Рассмотрим неколлинеарные точки M ( z ), P ( p ), Q ( q ) и их образы M ’( z ’), P ’( p ’), Q ’( q ’) при некотором аффинном преобразовании (2). Преобразование подобия задаётся тремя парами точек M " M ’, P " P ’, Q " Q ’ так, что треугольник M ’ P ’ Q ’ подобен треугольнику MPQ .
Существует два рода преобразований подобия. Подобие первого рода сохраняет ориентацию каждого отображаемого треугольника, а подобие второго рода отображает каждый треугольник в треугольник, противоположно ориентированный с ним. Рассмотрим теперь подобие каждого рода отдельно.
I. Пусть MPQ и M ’ P ’ Q ’ – одинаково ориентированные подобные треугольники, тогда выполняются равенства , где .
Рассмотрим равенство , откуда , тогда . Обозначим второе слагаемое как , получим равенство, задающее преобразование подобия первого рода :
, где . (18)