Дипломная работа: Численное исследование движения системы "газовая струя – жидкость"

ДИПЛОМНАЯ РАБОТА

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДВИЖЕНИЯ СИСТЕМЫ

"ГАЗОВАЯ СТРУЯ - ЖИДКОСТЬ"

Содержание

Введение

1. Общая постановка задачи и ее математические модели

1.1 Обзор экспериментальных и теоретических работ по физико-математическому моделированию взаимодействия газовых струй с жидкостями

1.2 Общая постановка задачи и схема взаимодействия газовой струи с жидкостью

1.3 Модели турбулентных струйных течений газа

1.4 Уравнения Навье - Стокса установившегося изотермического осесимметричного движения вязкой несжимаемой жидкости

2. Газовая струя и межфазная поверхность

2.1 Течения газа в сопле Лаваля

2.2 Параметры струи на уровне свободной поверхности жидкости

2.3 Геометрические характеристики межфазной поверхности

2.4 2Оптимальная высота поднятия фурмы

2.5 Аппроксимация зависимости оптимальной высоты поднятия фурмы от давления

3. Численное исследование движения жидкости

3.1 Некоторые особенности уравнений Навье - Стокса и их решений

3.2 Уравнения Навье - Стокса в переменных функция тока, вихрь скорости

3.3 Приближенное решение уравнений Навье – Стокса

3.4 Анализ результатов исследования

Заключение

Литература

Введение

Необходимость решения задачи о взаимодействии газовых струй с жидкими преградами возникла в конце 50-х годов прошлого столетия, в связи с интенсивным внедрением в металлургическую практику кислородно-конвертерного способа производства стали.

Технологически кислородно-конвертерный процесс представляет собой продувку железоуглеродистого расплава (чугуна) технически чистым кислородом, в результате которой происходит выгорание углевода и других примесей (сера, марганец, кремний, фосфор). В настоящее время отсутствуют фундаментальные работы по физико-математическому моделированию кислородно-конвертерного процесса в целом, что объясняется чрезвычайной сложностью гидродинамических и тепломассообменных процессов, протекающих в конвертерах. Очевидно, что создание физико-математических моделей кислородно-конвертерного процесса является очень трудной, хотя и важной задачей. Это обусловлено тем, что модель должна включать в себя три фундаментальные проблемы физической термодинамики - турбулентность, многофазность и воздействие физико-химических переходов.

В этой связи возникла проблема создания упрощенных физико-математических моделей кислородно-конвертерного процесса, и в первую очередь его гидродинамики, как основной части управляющего звена.

Настоящая дипломная работа посвящена численному исследованию силового взаимодействия газовой струи и несжимаемой жидкости через контактную поверхность, образующуюся при проникании струи в жидкость. Целью исследования является изучение влияния управляющих параметров процесса, а именно давления и температуры в газопроводе, а также высоты поднятия фурмы над уровнем невозмущенной жидкости на движение газа и жидкости как составляющих частей системы. Кроме того, исследовалось влияние управляющих параметров на величину площади межфазной поверхности.

В представленной математической модели отсутствуют эмпирические постоянные, а лишь используются известные закономерности механики жидкостей и газа. Расчет течения газа в фурме проведен по известным газодинамическим формулам для трубы переменного сечения (сопло Лаваля) [1, 2], параметры газовой струи рассчитывались с использованием [3], межфазная поверхность определялась на основании модифицированной теории проникания М.А. Лаврентьева [4, 5], а циркуляция жидкости исследовалась с помощью уравнений Навье - Стокса [6].

1. Общая постановка задачи и ее математические модели

Дается аналитический обзор основных работ по моделированию процессов, протекающих при взаимодействии газовых струй с жидкими преградами, показана общая схема силового взаимодействия и математические модели, описывающие его гидродинамику.

1.1 Обзор экспериментальных и теоретических работ по физико-математическому моделированию взаимодействия газовых струй с жидкостями

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 387
Бесплатно скачать Дипломная работа: Численное исследование движения системы "газовая струя – жидкость"