Дипломная работа: Экспертная система прогнозирования успеваемости студентов в ВУЗах
В качестве условия и действия в правилах может быть, например, предположение о наличии того или иного свойства, принимающее значение истина или ложь. При этом термин действие следует трактовать широко: это может быть как директива к выполнению какой-либо операции, рекомендация, или модификация базы знаний – предположение о наличии какого-либо производного свойства.
При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода. Чаще всего вывод бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения - к данным). Данные - это исходные факты, на основании которых запускается машина вывода - программа, перебирающая правила из базы.
«Фрейм – это структура данных, представляющая стереотипную ситуацию, вроде нахождения внутри некоторого рода жилой комнаты, или сбора на вечеринку по поводу дня рождения ребенка. К каждому фрейму присоединяется несколько видов информации. Часть этой информации – о том, как использовать фрейм. Часть о том, чего можно ожидать далее. Часть о том, что следует делать, если эти ожидания не подтвердятся».
Фрейм - это минимальное возможное описание сущности какого-либо явления, события, ситуации, процесса или объекта. Минимальность означает, что при дальнейшем упрощении описания теряется его полнота, она перестает определять ту единицу знаний, для которой предназначено. Например, слово "комната" вызывает у слушающих образ комнаты: "жилое помещение с четырьмя стенами, полом, потолком, окнами и дверью, площадью 6-20 м2 ". Из этого описания ничего нельзя убрать (например, убрав окна мы получим уже чулан, а не комнату), но в нем есть "дырки", - это незаполненные значения некоторых атрибутов - количество окон, цвет стен, высота потолка. покрытие пола и др. В теории фреймов такой образ называется фреймом.
Одним из способов представления знаний является семантическая сеть . Изначально семантическая сеть была задумана как модель преставления структуры долговременной памяти в психологии, но в последствии стала одним из основных способов представления знаний в инженерии знаний.
В основе сетевых моделей представления знаний лежит идея о том, что любые знания можно представить в виде совокупности объектов (понятий) и связей (отношений) между ними. В отличие от продукционных эти модели более наглядны, поскольку любой пример можно представить в виде ориентированного (направленного) графа, вершины которого - понятия, а дуги - отношения между ними.
Понятиями обычно выступают абстрактные или конкретные объекты, а отношения - это связи типа: "это" ("is"), "имеет частью" ("has part"), "принадлежит", "любит" и т.п. Характерной особенностью семантических сетей является обязательное наличие трех типов отношений:
1. Класс - элемент класса.
2. Свойство – значение.
3. Пример элемента класса.
Традиционно в представлении знаний выделяют логические модели, основанные на классическом исчислении предикатов первого порядка, когда предметная область или задача описывается в виде набора аксиом. Основное преимущество использования логики предикатов для представления знаний заключается в том, что обладающий хорошо понятными математическими свойствами мощный механизм вывода может быть непосредственно запрограммирован. С помощью этих программ из известных ранее знаний могут быть получены новые знания.
1.4 Механизмы логического вывода
При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода. Механизм выводов связывает знания .
Два способа использования продукционных правил:
- прямая цепочка рассуждений;
- обратная цепочка рассуждений.
Первый предполагает обработку информации в прямом направлении (метод сопоставления), когда образцом для поиска служит левая часть продукционного правила — условие, то есть задача решается в направлении от исходного состояния к целевому . Это соответствует стратегии «от данных к цели» или стратегии управления данными.
При втором подходе обработка информации осуществляется в обратном направлении — метод «генерации» или выдвижения гипотезы и ее проверки (стратегия «от цели к данным»).
Пример:Имеется фрагмент БЗ из двух правил:
П 1 : ЕСЛИ «отдых - летом» и «человек - активный», ТО «ехать в горы».
П 2 : ЕСЛИ «любит солнце»,«отдых летом».
Предположим в систему поступили данные: «человек - активный» и «любит солнце».Прямой вывод: исходя из данных, получить ответ:
Шаг 1. Пробуем П 1 не работает - не хватает данных «отдых - летом».
Шаг 2. Пробуем П 2 , работает, в базу поступает факт «отдых - летом». 2-й проход:
Шаг 3. Пробуем П 1 , работает, активируя цель «ехать в горы», которая и выступает, например, как совет, который дает система.
Обратный вывод: подтвердить выбранную цель при помощи имеющихся правил и данных:
Шаг 1. Цель - «ехать в горы»:
становятся новой целью, и имеется правило, где она в правой части.
Шаг 2. Цель «отдых летом»: