Дипломная работа: Формирование вычислительной культуры учащихся 5-6 классов

· Умение по условию задачи определить, являются ли исходные данные точными или приближенными, и владение правила действия с последними

Многие навыки, сопутствующие вычислениям, неизбежно требуются и в быту, и в школьной практике. Так, нередко, может потребоваться замена числа, близким ему числом, например 57406 тыс., представление числа в эквивалентной форме, например 25% – это 0,25, то есть четверть, сравнение чисел на основе качественных оценок.

Одной из основных задач преподавания курса математики в школе является формирование у учащихся сознательных и прочных вычислительных навыков.

Вычислительная культура формируется у учащихся на всех этапах изучения курса математики, но основа её закладывается в первые 5–6 лет обучения. В этот период школьники обучаются умению осознанно использовать законы математических действий (сложение, вычитание, умножение, деление, возведение в степень). В последующие годы полученные умения и навыки совершенствуются и закрепляются в процессе изучения математики, физики, химии и др. предметов.

Вычислительные умения и навыки можно считать сформированными только в том случае, если учащиеся умеют с достаточной беглостью выполнять математические действия с натуральными числами, десятичными и обыкновенными дробями, рациональными числами, а также производить тождественные преобразования различных числовых выражений и приближенные вычисления.

Об уровне вычислительной культуры учащихся можно судить по их умению производить устные и письменные вычисления, рационально организовать ход вычислений, убеждаться в правильности полученных результатов.

Вычислительные навыки отличаются от умений тем, что выполняются почти бесконтрольно. Такая степень овладения умениями достигается в условиях целенаправленного их формирования. Образование вычислительных навыков ускоряется, если учащемуся понятен процесс вычислений и их особенности.

Как в письменных, так и в устных вычислениях используются разнообразные правила и приемы. Уровень вычислительных навыков определяется систематичностью закрепления ранее усвоенных приемов вычислений и приобретением новых в связи с изучаемым материалом.

Перечислим важнейшие вычислительные умения и навыки учащихся 5–6 класса:

· умение находить числовое значение выражение с использованием всех действий с десятичными дробями [19, 3]:

· умение выполнять сложение и вычитание обыкновенных дробей с разными знаменателями, умножение и деление дробей;

· умение производить совместные действия над обыкновенными и десятичными дробями, применять переместительный и сочетательный законы сложения к упрощению вычислений с дробями, использовать распределительный закон умножения, выполнять действия с положительными и отрицательными числами;

В результате анализа учебно–методической литературы можно выделить следующие основные проблемы с вычислениями у учащихся 5- 6 классов:

· Почти четверть детей, окончивших начальную школу, ошибаются при вычислении значений числовых выражений, например:

· Около 40% шестиклассников не могут округлить натуральные числа и десятичные дроби; около 20% не осиливают вычислений с дробями, например:

· Учащиеся недостаточно уверенно владеют вычислительными стратегиями (сочетанием устных, письменных и инструментальных вычислений), пренебрегают промежуточным контролем и проверкой правдоподобия результата. Ошибки в расчетах сбивают с пути, намеченного для достижения результата, а внимание, сосредоточенное на осмыслении хода решения задачи, переносится на преодоление трудностей, связанных с вычислениями.

Все это говорит о том, как важно в процессе обучения математике в 5–6 классах формировать:

1. Опыт и сноровку в простых вычислениях наряду с отработкой навыков письменных и инструментальных вычислений, умение выбрать наиболее подходящий способ получения результата;

2. Умение пользоваться приемами проверки и интерпретации ответа;

3. Приведение возможностей использования математических знаний для рационализации вычислений.

Все это еще больше убеждает нас в необходимости формирования у учащихся вычислительной культуры, наличие которой у школьников позволит не допускать ошибки, о которых говорилось ранее.

Рассмотрим подробнее каждый из компонентов вычислительной культуры.

1.1 Навыки вычислений с рациональными числами

В курсе 1–4 классов в основном завершена теоретическая подготовка учащихся по изучению операций над рациональными числами, представленных как в идее обыкновенных, так и в виде десятичных дробей. Однако на этом этапе у школьника еще не сложились навыки быстрых и безошибочных действий над рациональными числами. Поэтому, начиная работу с 5–6 классами, учитель должен с первых же уроков обратить серьезное внимание на дальнейшее развитие навыков вычислений, планируя на каждый урок включение какого-либо рода вычислительных упражнений как в форме письменных, так и в форме устных заданий.

В 6 классе во втором полугодии подводятся итоги многолетней работы по обучению детей вычислениям, и основная задача, стоящая перед учителем математики, наряду с изучением темы «Положительные и отрицательные числа» и продолжением формирования у учащихся навыков вычислений с обыкновенными дробями, организовать качественное повторение изученного 1–5-м классах, и особенно продолжить тренировку в вычислениях с натуральными числами, десятичными дробями и процентами: на следующих ступенях обучения практически не будет ни времени, ни возможностей для «дообучения» школьников вычислениям, без чего сколько-нибудь полноценное обучение математики в следующих классах невозможно.

1.2 Умение рационализировать вычисления

Рационализация вычислений требует от учащихся, помимо знаний всех основных свойств арифметических действий над числами, элементарного желания «упростить себе жизнь», затратить на выполнение, громоздкого по виду, задания как можно меньше времени, увидеть самый короткий, но от этого не менее правильный путь достижения результата.

К-во Просмотров: 1059
Бесплатно скачать Дипломная работа: Формирование вычислительной культуры учащихся 5-6 классов