Дипломная работа: Формування математичних понять в процесі викладання математики в основній школі

В останньому випадку учні частково дістають уявлення про істотні властивості поняття, але означення поняття не формулюється з дидактичних міркувань.Розглянемо особливості методики формування трьох основних видів понять.

Первісні поняття. На перших уроках геометрії в 7 класі розкриваються істотні властивості понять «точка» і «пряма» за допомогою системи аксіом планіметрії. Тут учнів ознайомлюють з важливими відношеннями «належати» для точок і прямих, «лежить між» - для трьох точок прямої.Доцільно звернути увагу учнів на те, що поняття точки, прямої, площини походять від реальних існуючих об'єктів довкілля.

Наприклад, уявлення про пряму дає натягнута нитка, дріт, уявлення про точку - місце дотику олівця до паперу чи крейди до дошки, уявлення про площину – поверхня озера. Проте в геометрії ці фігури дістають, нехтуючи такими властивостями, як розміри точки, товщина прямої, площини. Пряма в геометрії не має товщини і уявляється продовженою необмежено, хоча зображається у вигляді відрізка.

Під час формування первісних понять геометрії важливо, щоб учні добре засвоїли термінологію стосовно цих понять. Наприклад: «точки А і С лежать на прямій а», або «точки А і С належать прямій а»; «прямі а і b перетинаються в точці С», або «точка С є точкою перетину прямих а і b».

Учні мають усвідомити, що поняття «лежить між» стосується точок прямої. Доцільно не тільки ввести поняття і проілюструвати на рисунку, а й розв'язати кілька вправ на підведення до цього поняття. Зокрема, можна запропонувати учням указати точки, які лежать між двома іншими точками. В цьому разі доцільно взяти не тільки точки прямої, а й точки довільних ліній, наприклад кола, ламаної (Мал.3).

Якщо запропонувати учням позначити точку К, яка лежить між даними точками А і В прямої, то деякі учні можуть поставити точку К посередині відрізка АВ. Це пов’язано з розумінням цього поняття в життєвій практиці. Учням слід пояснити: в геометрії точкою, що лежить між точками А і В, є не лише середина відрізка АВ, а будь – яка точка відрізка, розміщена правіше від А і лівіше від В.

Дехто з учнів може назвати точку С кола такою, яка лежить між точками А і D цього кола. Учні мають уміти обґрунтовувати неправильність такої відповіді, розрізняти сформоване на життєвому досвіді поняття «лежати між» і наукове, геометричне поняття.

Означувані поняття. У систематичних курсах алгебри і геометрії значна кількість нових понять означається. Наприклад, тотожно рівні вирази, тотожність, тотожне перетворення виразів, корінь рівняння, лінійне рівняння з одним невідомим, функція, багаточлен, степінь багаточлена, відрізок, промінь, коло, трикутник, паралельні прямі в просторі, багатогранник.

Вводячи означення математичних понять, потрібно враховувати, наскільки відомі й зрозумілі учневі певного віку ті істотні властивості, які розкривають зміст нового поняття. Психолог Дж. Брунер з цього приводу зазначав, що коли основні поняття подано у формальному вигляді як рівняння або точні словесні означення, то вони є недоступними для дитини, якщо вона не засвоїла їх спочатку інтуїтивно.

Це зауваження стосується введення означень на всіх етапах навчання. Що абстрактніше поняття, складніша логічна структура його означення, то гостріша потреба в попередньому запровадженні поняття на інтуїтивному рівні, у поясненні властивостей, які увійдуть в означення, спочатку на конкретних прикладах з використанням наочних образів. Важливо звертати увагу школярів на логічну структуру означень і передусім чітко називати спільні істотні властивості, що входять в означення, характер їх зв'язку (кон'юнктивний, диз'юнктивний чи обидва одночасно). При цьому не обов'язково вводити термінологію логіки, важливо пояснити роль сполучників.

Під час підсумкового повторення в 9 класі або на перших уроках стереометрії, коли пояснюється логічна будова геометрії, слід звернути увагу учнів на принципову можливість різних означень того самого поняття залежно від вибору істотних властивостей, що містить означення. Це можна пояснити на прикладі паралелограма. Водночас не можна допускати, щоб в учнів склалося уявлення про довільність введення математичних понять взагалі та їх означень зокрема.

Потрібно показати учням приклади обґрунтування доцільності введення саме такого, а не іншого означення певного поняття. Наприклад, під час розгляду поняття степеня з нульовим і від'ємним показниками слід пояснити, що доцільність запропонованих означень спричинена потребою поширити правила дій над степенями з натуральним показником на степені з нульовим і цілим від'ємним показниками.

Поняття, що вводяться описово.Значна кількість математичних понять, що вивчається в курсах математики початкової школи та 5 —6 класів, вводиться описово. Наприклад, у 5 класі за посібниками так вводять поняття числового й буквеного виразів, відрізка, кута, трикутника, площі, звичайного дробу, десяткового дробу, прямокутного паралелепіпеда; у 6 класі — поняття простого і складеного чисел, кола, кругового сектора, кулі, від'ємного числа, додатного числа, числової прямої, прямокутної системи координат, коефіцієнта, подібних доданків.

Низка понять вводиться описово, на прикладах і в систематичних курсах алгебри, геометрії. Наприклад, у 7 класі на уроках алгебри на кількох прикладах запроваджується поняття одночлена і його стандартного вигляду. При цьому увагу звертають на те, що наведені вирази є добутком чисел, змінних та їхніх степенів, тобто фактично розкривають істотну властивість одночленів. Розглядаючи поняття «геометрична фігура» на першому уроці геометрії в 7 класі, недоцільно обмежуватися лише рисунками фігур, запропонованих у підручнику.

Потрібно показати учням моделі різних планіметричних фігур і геометричних тіл, наприклад трикутників, виготовлених з дроту, і плоских трикутників, вирізаних з паперу або картону, кола, круга, паралелепіпеда, кулі. Слід звернути увагу на те, що обидва трикутники, коло, круг можуть розміститися в площині всіма своїми точками, а паралелепіпед і куля — ні. Ці перші уявлення про особливості різних геометричних фігур сприятимуть свідомому засвоєнню їхніх властивостей у подальшому вивченні курсу геометрії.

У процесі формування математичних понять учні припускаються помилок, самостійно виявляючи істотні властивості у разі формування поняття конкретно-індуктивним методом і формулюючи означення, якщо їх уже введено. При цьому учні часто не помічають деяких істотних властивостей або умов, невдало вибирають або взагалі пропускають родове поняття.

Найефективніше названі помилки виправляти за допомогою контрприкладів, які допомагають не тільки краще усвідомити істотні властивості понять, а й міцніше запам'ятати їх.

Наведемо приклад застосування контрприкладів для виправлення помилок учнів під час формулювання вже наведених раніше означень понять.

На уроках геометрії учні вже ознайомились з означенням хорди. Під час повторення вивченого було допущено помилку в означенні. При цьому «діалог» учителя з учнем може бути таким.

Учень. Хорда — це лінія, що з'єднує дві точки кола.

Учитель проводить хвилясту лінію, що з'єднує дві точка кола.

Учень. Хорда — це пряма лінія, що з'єднує дві точки кола.

Учитель проводить січну, що проходить через центр кола.

Учень. Хордою називається відрізок, що з'єднує дві точки кола.

Рівнозначні поняття. Відношення рівнозначності (або тотожність) утворюється між поняттями, що відображають один і той же предмет, його зв'язки.

У кожному предметі є, з одного боку, істотні ознаки, що є загальними для класу предметів, з іншою специфічні, характерні для даного предмету. Загальні ознаки, як вже мовилося, є родовими ознаками, специфічні — видовими. Родова ознака в даному випадку як би зв'язуюча ланка між видовими поняттями.

У видових ознаках тотожних понять відображаються різні сторони одного і того ж предмету або явища. Значить, видові ознаки цих понять не виключають, а доповнюють один одного. Звідси витікає, що об'єми тотожних понять співпадають.

Виходячи зі всього сказаного можна дати наступне визначення рівнозначних (тотожних) понять.

Рівнозначні поняття — це сумісні поняття про один і той же предмет і відмінні по видових ознаках, що характеризують різні сторони даного предмету:

К-во Просмотров: 266
Бесплатно скачать Дипломная работа: Формування математичних понять в процесі викладання математики в основній школі