Дипломная работа: Явление сверхпроводимости
где В0 - критическое поле, экстраполированное к абсолютному нулю температуры. Для некоторых веществ по - видимому имеет место зависимость от Т в первой степени. Если мы начнем увеличивать напряженность внешнего поля, то при критическом его значении сверхпроводимость разрушится. Чем ближе мы подходим к точке критической температуры, тем меньше должна быть напряженность внешнего магнитного поля для разрушения эффекта сверхпроводимости, и наоборот, при температуре, равной температуре абсолютного нуля напряженность должна быть максимальной по отношению к другим случаям для достижения такого же эффекта. Данная взаимосвязь иллюстрируется следующим графиком (рис. 3).
Рис. 3
Если мы начнем увеличивать напряженность внешнего поля, то при критическом его значении сверхпроводимость разрушится. Чем ближе мы подходим к точке критической температуры, тем меньше должна быть напряженность внешнего магнитного поля для разрушения эффекта сверхпроводимости, и наоборот, при температуре, равной температуре абсолютного нуля напряженность должна быть максимальной по отношению к другим случаям для достижения такого же эффекта. При действии магнитного поля на сверхпроводник наблюдается особого вида гистерезис, а именно если повышая магнитное поле уничтожить сверхпроводимость при (H - сила поля, Hк - повышенная сила поля):
, (2)
то с понижением интенсивности поля сверхпроводимость появится вновь при поле , меняется от образца к образцу и обычно составляет 10% Hк .
3) достаточно большая плотность тока в образце;
Повышение силы тока также приводит к исчезновению сверхпроводимости, то есть при этом понижается Tк . Чем ниже температура, тем выше та предельная сила тока iк при которой сверхпроводимость уступает место обычной проводимости.
4) изменение внешнего давления;
Изменение внешнего давления р вызывает смещение Тк и изменение напряжённости магнитного поля, разрушающего сверхпроводимость.
1.2 Сверхпроводящие вещества
В дальнейшем было установлено, что не только у ртути, но и у других металлов и сплавов электрическое сопротивление при достаточном охлаждении становится равным нулю.
Самой высокой критической температурой среди чистых веществ обладает ниобий (9,220 К), а наиболее низкой иридий (0,140 К). Критическая температура зависит не только от химического состава вещества, но и от структуры самого кристалла. Например, серое олово—полупроводник, а белое олово – металл, переходящий в сверхпроводящее состояние при температуре 3,720 К. Две кристаллические модификации лантана (α-La и β-La) имеют разные критические температуры перехода в сверхпроводящее состояние (для α-La Тк =4,80 К, β-La Тк =5,950 К). Поэтому сверхпроводимость является свойством не отдельных атомов, а коллективный эффект, связанный со структурой всего образца. [5,С.506]
Хорошие проводники (серебро, золото и медь) не обладают этим свойством, а многие другие вещества, которые в обычных условиях проводники очень плохие - наоборот, обладают. Для исследователей явилось полной неожиданностью и еще больше осложнило объяснение этого явления. Основную часть сверхпроводников составляют не чистые вещества, а их сплавы и соединения. Причем сплав двух несверхпроводящих веществ может обладать сверхпроводящими свойствами. Различают сверхпроводники первого и второго рода.
Сверхпроводниками первого рода являются чистые металлы, всего их насчитывается более 20. Среди них нет металлов, которые при комнатной температуре являются хорошими проводниками, а, наоборот, металлы, обладающие сравнительно плохой проводимостью при комнатной температуре (ртуть, свинец, титан и др.).
Сверхпроводниками второго рода являются химические соединения и сплавы, причём не обязательно это должны быть соединения или сплавов металлов, в чистом виде являющиеся сверхпроводниками первого рода. Например, соединения MoN, WC, CuS являются сверхпроводниками второго рода, хотя Mo, W, Cu и тем более N, C и S не являются сверхпроводниками. Число сверхпроводников второго рода составляет несколько сотен и продолжает увеличиваться. [2,С.120].
Долгое время сверхпроводящее состояние различных металлов и соединений удавалось получить лишь при весьма низких температурах, достижимых с помощью жидкого гелия. К началу 1986 г. максимальное наблюдавшееся значение критической температуры составляло уже 230 К. [25,С.238]
1.3 Эффект Мейснера
В 1933 г. Мейснер и Оксенфельд установили, что за явлением сверхпроводимости скрывается нечто большее, чем идеальная проводимость, т. е. равенство нулю удельного сопротивления. Они обнаружили, что магнитное поле выталкивается из сверхпроводника независимо от того, чем это поле создано – внешним источником или током, текущим по самому сверхпроводнику (рис. 4). Оказалось, что магнитное поле не проникает в толщу сверхпроводящего образца. [6,С.177]
Рис 4. Выталкивание потока магнитной индукции из сверхпроводника.
При температурах более высоких, чем критическая температура перехода в сверхпроводящее состояние, в образце, помещённом во внешнее магнитное поле, как и во всяком металле, индукция магнитного поля внутри отлична от нуля. Если, не выключая внешнего магнитного поля, постепенно снижать температуру, то в момент перехода в сверхпроводящее состояние магнитное поле вытолкнется из образца и индукция магнитного поля внутри станет равной нулю (В=0). Этот эффект назвали эффектом Мейснера.[5,С.506]
Как известно, металлы, за исключением ферромагнетиков в отсутствие внешнего магнитного поля обладают нулевой магнитной индукцией. Это связано с тем, что магнитные поля элементарных токов, которые всегда имеются в веществе, взаимно компенсируются вследствие полной хаотичности их расположения.
Помещенные во внешнее магнитное поле, они намагничиваются, т.е. внутри "наводится" магнитное поле. Суммарное магнитное поле вещества, внесенного во внешнее магнитное поле, характеризуется магнитной индукцией , равной векторной сумме индукции внешнего и индукции внутреннего магнитных полей, т.е. . При этом суммарное магнитное поле может быть как больше, так и меньше магнитного поля.
Для того чтобы определить степень участия вещества в создании магнитного поля индукцией , находят отношение значений индукции . Коэффициент µ называют магнитной проницаемостью вещества. Вещества, в которых при наложении внешнего магнитного поля возникающее внутреннее поле добавляется к внешнему (µ > 1), называются парамагнетиками. При коэффициенте m>1 происходит уменьшение внешнего поля в образце.
В диамагнитных веществах (m<1) наблюдается ослабление приложенного поля. В сверхпроводниках В=0, что соответствует нулевой магнитной проницаемости. В поверхностном слое металла возникает стационарный электрический ток, собственное магнитное поле которого противоположно приложенному полю и компенсирует его, что в результате и приводит к нулевому значению индукции в толще образца.
Существование стационарных сверхпроводящих токов обнаруживается в следующем эксперименте: если над металлическим сверхпроводящим кольцом поместить сверхпроводящую сферу, то на ее поверхности индуцируется сверхпроводящий незатухающий ток. Его возникновение приводит к диамагнитному эффекту и возникновению сил отталкивания между кольцом и сферой, в результате будет наблюдаться парение сферы над кольцом. [5,С.507] Глубина проникновения поля в образец является одной из основных характеристик сверхпроводника. Обычно глубина проникновения приблизительно равна 100..400Å. С ростом температуры глубина проникновения магнитного поля возрастает по закону:
. (3)
Наиболее простая оценка глубины проникновения магнитного поля в сверхпроводник была дана братьями Фрицем и Гансом Лондонами. Приведём эту оценку. Будем предполагать, что имеем дело с полями, медленно меняющимися во времени. Так как сверхпроводники не ферромагнитны, то можно пренебречь разницей между и и записать фундаментальные уравнения электродинамики в виде