Дипломная работа: Явление сверхпроводимости
Первой теорией, достаточно успешной описавшей свойства сверхпроводников, была теория Ф. Лондона и Г. Лондона, предложенная в 1935 г. Лондоны в своей теории основывались на двухжидкостной модели сверхпроводника. Считалось, что при в сверхпроводнике имеются «сверхпроводящие» электроны с концентрацией и «нормальные» электроны с концентрацией , где -полная концентрация проводимости). Плотность сверхпроводящих электронов уменьшается с ростом и обращается в нуль при . При она стремится к плотности всех электронов. Ток сверхпроводящих электронов течёт через образец без сопротивления.
Лондонами в дополнение к уравнения Максвелла были получены уравнения для электромагнитного поля в таком сверхпроводнике, из которых вытекали его основные свойства: отсутствие сопротивления постоянному току и идеальный диамагнетизм. Однако в силу того, что теория Лондонов была феноменологической, она не отвечала на главный вопрос, что представляют собой «сверхпроводящие» электроны. Кроме того, она имела ещё ряд недостатков, которые были устранены В.Л. Гинзбургом и Л.Д. Ландау.
В теории Гинзбурга – Ландау для описания свойств сверхпроводников была привлечена квантовая механика. В этой теории вся совокупность сверхпроводящих электронов описывалась волновой функцией от одной пространственной координаты. Вообще говоря, волновая функция электронов в твёрдом теле есть функция координат . Введением функции устанавливалось когерентное, согласованное поведение всех сверхпроводящих электронов. Действительно, если все электронов ведут себя совершенно одинаково, согласовано, то для описания их поведения достаточно той же самой волновой функции, что и для описания поведения одного электрона, т.е. функции от одной переменной.
Несмотря на то что теория Гинзбурга – Ландау, получившая дальнейшее развитие в работах А.А.Абрикосова, описывала многие свойства сверхпроводников, она не могла дать понимания явления сверхпроводимости на микроскопическом уровне.
В данной главе рассматриваются вопросы открытия явления сверхпроводимости, первые опытные факты, первые теории, а также некоторые свойства сверхпроводников.
Анализируя вышеизложенное можно сделать следующие выводы:
1) Такое состояние проводника, при котором его электрическое сопротивление равно нулю, называется сверхпроводимостью, а вещества в таком состоянии – сверхпроводниками.
2) Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия джоулева тепла (токи до 300А продолжают течь много часов подряд).
3) Сверхпроводимость исчезает под действием следующих факторов: повышение температуры, действие достаточно сильного магнитного поля, достаточно большая плотность тока в образце, изменение внешнего давления.
4) Магнитное поле выталкивается из сверхпроводника независимо от того, чем это поле создано – внешним источником или током, текущим по самому сверхпроводнику.
5) Существует связь между критической температурой перехода в сверхпроводящее состояние и массой изотопов, которое называется изотопическим эффектом.
6) Изотопический эффект указал на то, что колебания решетки участвуют в создании сверхпроводимости.
Глава 2. Теория сверхпроводимости
2.1 Теория БКШ
В 1957 г. Бардиным, Купером и Шриффером была построена последовательная теория сверхпроводящего состояния вещества (теория БКШ). Ещё задолго до этого Ландау была создана теория сверхтекучести гелия II. Оказалось, что сверхтекучесть – это макроскопический квантовый эффект. Однако перенести теорию Ландау на явление сверхпроводимости мешало то обстоятельство, что атомы гелия, обладая нулевым спином, подчиняются статистике Бозе-Эйнштейна. Электроны же, обладая половинным спином, подчиняются принципу Паули и статистике Ферми – Дирака. Для таких частиц невозможна бозе-эйнштейновская конденсация, необходимая для возникновения сверхтекучести. Учёные предположили, что электроны группируются в пары, которые обладают нулевым спином и ведут себя как бозе – частицы. Независимо от них в 1958 г. Н.Н. Боголюбов разработал более совершенный вариант теории сверхпроводимости.[]
Теория БКШ относится к идеализированной модели, в которой пока полностью отбрасываются структурные особенности металла. Металл рассматривается в виде потенциального ящика, заполненного электронным газом, подчиняющимся статистике Ферми. Между отдельными электронами действуют силы кулоновского отталкивания, в большей мере ослабленные за счёт поля атомных остовов. Изотопный эффект в сверхпроводимости указывает на наличие взаимодействия электронов с тепловыми колебаниями решётки (с фононами). [7,С.303]
Электрон, движущийся в металле, электрическими силами деформирует—поляризует кристаллическую решетку образца. Вызванное этим смещение ионов решетки отражается на состоянии другого электрона, поскольку он теперь оказывается в поле поляризованной решетки, несколько изменившей свою периодическую структуру. Таким образом, кристаллическая решетка выступает в роли промежуточной среды в межэлектронных взаимодействиях, так как с ее помощью электроны реализуют притяжение друг к другу. При высоких температурах достаточно интенсивное тепловое движение отбрасывает частицы друг от друга, фактически уменьшая силу притяжения. Но при низких температурах силы притяжения играют очень важную роль.
Два электрона отталкиваются друг от друга, если находятся в пустоте. В среде же сила их взаимодействия равна:
, (14)
где ε - диэлектрическая проницаемость среды. Если среда такова, что ε<0, то одноименные заряды, в том числе и электроны, будут притягиваться. Кристаллическая решетка некоторых веществ является той средой, в которой выполняется это условие, а значит при определенных температурах возможно возникновение эффекта сверхпроводимости. Таким образом, эффект взаимного притяжения электронов не противоречит законам физики, так как происходим в некоторой среде.
Рассмотрим металл при Т=00 К. Его кристаллическая решетка совершает «нулевые» колебания, существование которых связано с квантово-механическим соотношением неопределенностей. Электрон, движущийся в кристалле, нарушает режим колебаний и переводит решетку в возбужденное состояние. Обратный переход на прежний энергетический уровень сопровождается излучением энергии, захватываемой другим электроном и возбуждающей его. Возбуждение кристаллической решетки описывается звуковыми квантами - фононами, поэтому описанный выше процесс можно представить как излучение фонона одним электроном и поглощение его другим электроном, кристаллическая решетка же играет промежуточную роль передатчика. Обмен фононами обуславливает их взаимное притяжение.
При низких температурах это притяжение у ряда веществ преобладает над кулоновскими силами отталкивания электронов. При этом электронная система превращается в связанный коллектив, и чтобы ее возбудить требуется затрата некоторой конечной энергии. Энергетический спектр электронной системы в этом случае не будет непрерывным - возбужденное состояние отделено от основного энергетической щелью.
Теперь установлено, что нормальное состояние металла отличается от сверхпроводящего характером энергетического спектра электронов вблизи поверхности Ферми. В нормальном состоянии при низких температурах электронное возбуждение соответствует переходу электрона из первоначально занятого состояния κ (<κF ) под поверхностью Ферми в свободное состояние κ (>κF ) над поверхностью Ферми. Энергия, необходимая для возбуждения такой электронно – дырочной пары в случае сферической поверхности Ферми, равна
. (15)
Поскольку κ и κ1 могут лежать достаточно близко к поверхности Ферми, то .
Электронную систему в сверхпроводнике можно представить как состоящую из связанных пар электронов (куперовских пар), а возбуждение, как разрыв пары. Размер электронной пары составляет приблизительно ~10-4 см, размер периода решетки - 10-8 см. То есть электроны в паре находятся на огромном расстоянии.
Наиболее характерным свойством металла в сверхпроводящем состоянии является то, что энергия возбуждения пары всегда превышает некоторую определённую величину 2Δ, которую называют энергией спаривания. Другими словами, в спектре энергий возбуждения со стороны малых энергий имеется щель. Например, для металлов Hg, Pb, V, Nb значение 2Δ соответствует тепловой энергии при температурах 180 К, 290 К, 180 К и 300 К.
Величина энергии спаривания измеряется непосредственно на опыте: при исследовании поглощения электромагнитного излучения – поглощается только излучение с частотой ђω = 2Δ, при исследовании экспоненциального изменения затухания звука и др.[4,С.280]
При наличии щели в энергетическом спектре квантовые переходы системы не всегда будут возможны. Электронная система не будет возбуждаться при малых скоростях движения, следовательно, движение электронов будет происходить без трения, что означает отсутствие сопротивления. При определенном критическом токе электронная система сможет перейти на следующий энергетический уровень и сверхпроводимость разрушится.