Дипломная работа: Инверсия и ее применение

3. КРґ┴ОР, Рґ Є ОР, Рґ - инверсна точке Р. (рис 2).

Рис. 2.

Доказательство.

Рассмотрим подобные треугольники ОРК и ОКРґ. Из подобия следует: = или ОР ОРґ = R2 .

Точка Рґ Є ОР (по построению).

3 случай.

Точка Р – внутри базисной окружности. Тогда построение выполняем в обратом порядке.

Построение.

1. щ (О, R) и Р – данная точка.

2. РК┴ОР, К Є щ.

3. КР – касательная к окружности.

1.2 Свойства инверсии

Прежде, чем рассмотреть свойства инверсии, установим одну простую лемму, которая играет существенную роль при изучении свойств инверсии.

Лемма. Пусть инверсия ц переводит точки А и В соответственно в точки Аґ и Вґ (предполагается, что точки А и В отличны от точки О и бесконечно удаленной точки и, кроме того, точки О, А, В не лежат на одном луче с началом в точке О). Тогда треугольники ОАВ и ОАґВґ подобны и ∟ОАВ= ∟ОВґАґ, ∟ОВА= ∟ОАґВґ.

Доказательство: У треугольников ОАВ и ОАґВґ (рис.3) имеется общий угол, а стороны, заключающие этот угол, пропорциональны. Действительно, так как ОАОАґ = ОВОВґ = r2, то = . Отсюда следует, что треугольники ОАВ и ОАґВґ подобны.

Рис 3.

Но так как против пропорциональных сторон в подобных тре6угольниках лежат равные углы, то из соотношения = следует равенство соответствующих углов: ∟ОАВ= ∟ОВґАґ, ∟ОВА= ∟ОАґВґ.

Лемма доказана.

Теорема 1. Инверсия ц переводит любую прямую, проходящую через центр инверсии, саму на себя, т. е. прямая, проходящая через центр инверсии, есть инвариантная фигура.

Доказательство этой теоремы непосредственно вытекает из определения инверсии.

Теорема 2. Инверсия ц преобразует прямую, не проходящую через центр инверсии О, в окружность, проходящую через точку О.

Доказательство: Пусть l – прямая, не проходящая через центр инверсии – точку О. Опустим из точки О перпендикуляр на прямую l , и пусть он пересекает l в точке М (рис 4). Пусть Мґ образ точки М относительно инверсии ц. Точка Мґ, очевидно, лежит на луче ОМ. На прямой l рассмотрим произвольную точку X, отличную от бесконечно удаленной точки О ∞. Пусть Xґ - образ Х относительно инверсии ц. Тогда по лемме 1 имеем ∟ОXґМґ = ∟ОМХ = . Поэтому точка Xґ лежит на окружности К, построенной на отрезке ОМґ как на диаметре. Так как точка Х взята на прямой l произвольно, то образ прямой l при инверсии ц представляет собой совокупность точек l′, расположенную на окружности К.


Рис. 4

Докажем теперь, что множество точек l′ совпадает с окружностью К. прежде всего отметим, что точка О принадлежит множеству l′. Это вытекает из того, что прямая l проходит через бесконечно удаленную точку О ∞, а эту точку инверсия ц переводит в точку О. Пусть теперь Y – произвольная точка окружности К. Луч ОY пересекает прямую l в некоторой точке Z. Так как точки Y и Z лежат на одном луче ОZ, то нам нужно лишь проверить, что выполняется соотношение ОY = . По построению треугольники ОYМґ и ОМZ (рис 4) подобны. Поэтому = . Отсюда ОY = = . Итак, доказано, что точка Y есть образ точки Z при инверсии ц.

Теорема доказана.

Построение, проведенное в доказательстве теоремы 2, дает способ построения образа заданной прямой относительно инверсии ц с помощью циркуля и линейки. Из центра инверсии – точки О – опускаем перпендикуляр ОМ (рис 4) на прямую l. Строим точку Мґ, являющуюся образом точки М (при этом приходится строить отрезок длиной, равной r2/ОМ). Образ прямой l относительно инверсии – окружность lґ - строится на отрезке ОМґ как на диаметре.

К-во Просмотров: 759
Бесплатно скачать Дипломная работа: Инверсия и ее применение