Дипломная работа: Инверсия и ее применение
1) прямые l1 и l2 проходят через центр инверсии ц;
2) одна из прямых l1 и l2 проходит через центр инверсии;
3) ни l1 и l2 не проходят через центр инверсии.
В первом случае утверждение теоремы очевидно. Рассмотрим случаи 2) и 3). В случае 2) (рис. 10) будем считать для определенности, что прямая l1 проходит через центр инверсии - точку О. Тогда инверсия ц переводит прямую l1 саму в себя, т.е. образ прямой l1 совпадает с этой прямой. Прямая l2 не проходит через центр инверсии и потому переводится инверсией в некоторую окружность lґ2, проходящую через точку О. Касательная t к окружности lґ2 в точке О параллельно прямой l2.
Рис. 10
Относительно взаимного расположения прямых l1 и l2 могут представиться 2 возможности:
а) прямые l1 и l2 параллельны;
б) l1 и l2 пересекаются в некоторой точке А.
Если l1 и l2 параллельны, то угол между ними, очевидно, равен 0. Но прямая l1 проходит через точку О и параллельна l2 . Поэтому она необходимо будет совпадать с касательной t к окружности lґ2 в точке О. Отсюда следует, что угол между lґ1 и lґ2 равен 0 и, следовательно, утверждение теоремы в случае а) доказана.
Пусть теперь l1 и l2 не параллельны и А – точка их пересечения. Обозначим через б наименьший из вертикальных углов между l1 = lґ1 и прямой l2 или, что то же, прямой t. Точка А при инверсии переходит в некоторую точку Аґ, в которой прямая lґ1 пересекается с окружностью lґ2. Но прямая lґ1 или, что то же, прямая ОАґ составляет с касательной tґ в точке Аґ к окружности lґ2 такие же вертикальные углы, что и с касательной t. Отсюда немедленно следует, что угол между l1 и l2 в точке Аґ равен б.. случай 2) полностью доказан.
Рис. 11
Третий случай (рис. 11) доказывается аналогичными рассуждениями. Заметим только, что если прямые l1 и l2 параллельны, то соответствующие окружности lґ1 и lґ2 имеют в точке О общую касательную и составляют между собой нулевой угол. Отсюда угол между lґ1 и lґ2 равен углу между l1 и l2. Если же прямые l1 и l2 пересекаются, то, как видно из рис. 11, угол между окружностями lґ1 и lґ2 в точке О равен углу между прямыми l1 и l2, т. к. касательные t1 и t2 к этим окружностям в точке О параллельны прямым l1 и l2. Отсюда и вытекает утверждение теоремы.
Рассмотрим еще две теоремы без доказательства.
Теорема 6. Угол между окружностями равен углу между образами этих окружностей относительно инверсии.
Теорема 7. Угол между окружностью и прямой равен углу между образами этих фигур относительно инверсии.
1.3 Лемма об антипараллельных прямых
Сначала рассмотрим вспомогательное понятие.
Пусть некоторая прямая a пересекает обе стороны некоторого угла (k, l) (рис. 12). В пересечении с какой–либо из сторон угла, например k, эта прямая образует четыре угла, из которых только один лежит внутри треугольника, отсекаемого прямой от угла (k, l).
Рис. 12
В дальнейшем, когда речь будет идти об угле между прямой и стороной угла, мы будем иметь в виду именно этот угол.
Пусть теперь две прямые (рис. 13) пересекают стороны угла, причем одна из них образует с одной из сторон угла такой же угол, какой вторая прямая образует с другой стороной угла (на рис. 13) ∟1 = ∟2.
Рис. 13
Легко понять, что когда и первая прямая образует со второй стороной угла такой же угол, какой образует вторая прямая с первой стороной угла ∟3 = ∟4.
Определение. Две прямые, пересекающие стороны некоторого угла, называются антипараллельными относительно этого угла, если одна из них образует с одной из его сторон такой же угол, какой образует другая прямая с другой его стороной.
Антипараллельными являются прямые a и b на рисунке 13, прямые с и d на рисунке 14, где с ┴ k и d ┴ l.