Дипломная работа: Инверсия и ее применение
Доказательство этой теоремы вытекает из доказательства теоремы 2.
Теорема 4. Инверсия ц преобразует окружность, не проходящую через центр инверсии О, в некоторую окружность, также не проходящую через центр инверсии.
Доказательство: пусть К – окружность, не проходящая через центр инверсии О. Через точку О проведем прямую g так, чтобы она пересекала окружность К по диаметру АВ (рис 5).
Рис 5.
Пусть Аґ и Вґ - образы точек А и В относительно инверсии ц, Х – произвольная точка окружности К и Хґ - ее образ.
По лемме 1 треугольники ОХА и ОХґАґ подобны и потому ∟ОАґХґ = ∟ОХА; аналогично треугольники ОХВ и ОХґВґ подобны и, следовательно, ∟ОВґХґ = ∟ОХВ.
Так как ∟АґХґВґ = ∟ОВґХґ - ∟ОАґХґ = ∟ОХВ - ∟ОХА = ∟АХВ = , то отсюда вытекает, что отрезок АґВґ из точки Хґ виден под углом и, стало быть, точка Хґ лежит на окружности S, построенной на отрезке АґВґ как на диаметре. Поскольку точка Х на окружности К была выбрана произвольно, то Кґ - образ окружности К при инверсии ц – расположен на окружности S. Пусть Y – произвольная точка окружности S и Z – точка на луче ОY такая, что ОZ = . Очевидно, что точка Z переводится инверсией ц в точку Y. Далее, из соотношений
ОА ОАґ = r2
ОВ ОВґ = r2
ОZOY = r2
и леммы 1 вытекает, что ∟AZB = ∟OZB - ∟OZA = ∟OB′Y - ∟OA′Y =∟A′YB′ = .
Следовательно, что точка Z лежит на окружности К. отсюда вытекает, что фигуры S и Кґ совпадают. Так как по построению концы диаметра окружности К – точки А, В – отличны от точки О, то окружность Кґ не проходит через точку О.
Построения , приведенные выше, дают возможность строить образ окружностей при инверсии с помощью циркуля и линейки. Рассмотрим этот вопрос более подробно.
а) Окружность не проходит через центр инверсии. В этом случае проводим из точки О луч, который пересекает окружность К по диаметру АВ, для точек А и В строим их образы Аґ и Вґ. окружность Кґ - образ окружности К относительно инверсии ц – есть окружность, построенная на отрезке АґВґ как на диаметре (рис. 6).
Рис. 6
б) Окружность К проходит через центр инверсии. В этом случае согласно теореме 3 образ К есть прямая Кґ. из точки О проводим луч ОА (рис 7), который пересекает К по диаметру ОА. Для точки А строим ее образ – точку Аґ. Прямая, проходящая через точку Аґ перпендикулярно лучу ОА, и есть искомая прямая Кґ
Построение прямой Кґ значительно упрощается в двух случаях:
1) если окружность К пересекает окружность инверсии в двух точках В и С, то прямая Кґ совпадает с прямой ВС (рис. 8);
2) если К касается окружности инверсии, то Кґ есть касательная к окружности инверсии в точке касания К с окружностью инверсии (рис. 9).
Рис. 7
Рис. 8
Рис. 9
Рассмотрим теперь вопрос о характере изменения углов между кривыми под действием инверсии ц. Как известно, углом между кривыми L1 и L2 в точке их пересечения называется наименьший из вертикальных углов между касательными к этим кривым в рассматриваемой точке. Можно доказать, что при инверсии углы между кривыми сохраняются. Ниже это предложение доказывается для окружностей и прямых.
Теорема 5. При инверсии ц угол между прямыми равен углу между их образами.