Дипломная работа: Исследование физических явлений в диэлектрических жидкостях инициируемых лазерным излучением

Приложения


Введение

В стремительном развитии современной науки и техники одно из первых мест, несомненно, принадлежит разработке и применению оптических квантовых генераторов (ОКГ) – лазеров.

Создание мощных источников когерентного монохроматического излучения - лазеров послужило толчком к изучению физических явлений, возникающих при взаимодействии мощного светового пучка с атомами. В том числе и изучение физической природы явления пробоя жидкости в поле очень интенсивного светового излучения. Понятие фундаментальных механизмов взаимодействия электронов в жидкости с внешним электрическим полем.

Понимание этих механизмов открывает новые перспективные области применения лазерного излучения в науке и технике. В том числе и замена традиционных методов обработки материалов.


1 Цели и задачи работы

Целью работы является изучение возможности, и создание устойчивого проводящего канала в диэлектрической жидкости под воздействием лазерного излучения. И изучением возможности использования этого канала в области электроэрозионной обработки материалов.

Анализ физических процессов в диэлектрической жидкости под воздействием лазерного излучения и постоянного внешнего электрического поля, а также исследование литературных источников предопределили необходимость решения следующих задач:

1. Анализ литературы по данной проблеме.

2. Разработка математических моделей физических процессов, имеющих место в диэлектрической жидкости под воздействием лазерного излучения.

3. Разработка экспериментальной установки и методики проведение эксперимента для влияния излучения СО2 -лазера с выходной мощностью до 100 Вт на изучаемое вещество.

4. Экспериментальное исследование закономерностей лазерного излучения (ЛИ) на физические процессы вдиэлектрической жидкости в указанном диапазоне мощности лазерного излучения.

5. Обработка полученных результатов эксперимента.


2 Аналитический обзор литературы

2.1 Взаимодействие лазерного излучения с атомами

В начале XX века формулировка А. Эйнштейном закона для фотоэффекта открыла исследования этого процесса, одного из основных процессов, возникающих при взаимодействии электромагнитного излучения с веществом. Атомный фотоэффект, именуемый также процессом фотоионизации атома, является вариантом фотоэффекта на атомарном уровне взаимодействия излучения. В первой половине XX века процесс фотоионизации атома был детально изучен экспериментально и описан теоретически [1].

Основной чертой процесса фотоионоизации атома является его однофтонная природа – элементарный акт отрыва электрона от атома происходит в результате поглощения одного фотона. Соответственно на современном уровне этот процесс именуется также однофотонной ионизацией атома [2].

В первой половине XXвека были обнаружены, исследованы и описаны также и другие элементарные процессы, возникающие при взаимодействии света с атомом – фотовозбуждение атома, рэлеевское и романовское (комбинированное) рассеивание света атомом.

Рисунок.1. Схемы однофотонных процессов. a – фотоианизация атома, б - фотовозбуждение атома, в - рэлеевское рассеивание света атомом, г - романовское рассеивание света атомом. Е – энергия электрона в атоме, Еi – потенциал ионизации атома, n – основное состояние, m, q – возбужденные связанные состояния электрона в атоме, прямые стрелки - вынужденные переходы электрона в результате поглощения фотона, волнистые стрелки – свет, рассеянный атомами

В середине XX века были открыты качественно новые явления, возникающие при взаимодействии электромагнитного излучения с веществом. Эти открытия были стимулированы революционными изменениями в характеристиках источников света. Появление лазеров дало в руки экспериментаторов монохроматическое излучение оптического диапазона частот гигантской интенсивности, существенно превышающей атомную интенсивность (Ia =3.61*1016 Вт/см). Соответственно напряженность поля лазерного излучения существенно превышает атомную напряженность поля (Fa =5.41*109 В/см). Из сравнения этой величины с интенсивностью долазерных источников монохроматического излучения – спектральных ламп – составляющей величину порядка 1-10 Вт/см2 , ясно, что при взаимодействии лазерного излучения с веществом должна возникнуть качественно новая физика.

Действительно, использование лазерного излучения позволило обнаружить существование помимо процесса однофотонной ионизации атомов также и процесса многофотонной ионизации атомов. Основой чертой

процесса многофотонной ионизации атома является тот факт, что отрыв электрона от атома происходит в результате поглощения нескольких фотонов в одном элементарном акте [1].

Используя лазерное излучение, были обнаружены и многофотонные аналоги других основных однофотонных процессов – многофотонное возбуждение атома, возбуждение высших гармоник при рассеянии света (многофотонное рэлеевское рассеяние света) и гиперрамановское ( многофотонное рамановское) рассеяние света атомом.

Таким образом, использование высокоинтенсивного лазерного излучения привело к возникновению новой главы физики – нелинейного( многофотонного) взаимодействия электромагнитного излучения с веществом на атомном уровне.

Рисунок.2. Схемы многофотонных процессов. a – многофотонная фотоианизация атома, б - многофотонное возбуждение атома, в – возбуждение высшей (третьей) гармоники падающего излучения, г – гиперрамановское рассеивание света атомом. Обозначения те же, что и на рис. I – состояние электрона, поглотившего один или несколько фотонов.

Обнаружение многофотонных (нелинейных) процессов привело к современному взгляду на однофотонные процессы, как результат реализации предельного случая, когда взаимодействие происходит при малой интенсивности света [2].

За вторую половину XX века процессы многофотонной (нелинейной) ионизации атомов были детально исследованы экспериментально и всесторонне описаны теоретически. К настоящему времени эта глава физики представляет собой исследование, законченное в основных чертах. Этому вопросу посвящены сотни работ, десятки обзоров и ряд монографий.

Поскольку лазерное излучение обладает уникальными свойствами (частота и монохроматичность, мощность, когерентность и малая угловая расходимость) возникла потребность в выяснении особенностей его взаимодействия с атомами. Перейдем к описанию некоторых эффектов, возникающих при взаимодействии лазерного излучения с атомами.

Ионизацию вещества под действием света называют фотоионизацией.

Основные законы фотоэффекта

1. Число электронов N выбиваемых из вещества под действием света, пропорционально интенсивности светового потока I:

К-во Просмотров: 243
Бесплатно скачать Дипломная работа: Исследование физических явлений в диэлектрических жидкостях инициируемых лазерным излучением