Дипломная работа: Исследование магнитных систем в программной системе конечно-элементного анализа ANSYS
где φ (x, y, z) – скалярная функция.
В цилиндрической системе координат оно выглядит следующим образом:
[3]
где φ(R, α, z).
К уравнениям эллиптического типа относится уравнение Пуассона, которое для линейных изотропных (μх = μy = μz = μ = const) сред имеет вид:
[5]
Где - векторный магнитный потенциал , - вектор плотности тока,
-абсолютная магнитная проницаемость среды моделирования.
Если речь идет о нелинейных средах моделирования, т.е. μ ≠ const, то из уравнений Максвелла получим
[6]
или
[7]
Вектор-потенциал есть величина векторная и в декартовой системе координат
,
вектор плотности тока
.
Тогда уравнение Пуассона разбивается на три уравнения относительно скалярных величины Аx, Аy, Аz.
Если в модели ЭУ принять, что ток, а следовательно, и векторный магнитный потенциал имеют только z-составляющую, то получим плоскопараллельную или осесимметричную задачу. Для плоскопараллельного магнитного поля в декартовой системе координат можно записать уравнение Пуассона
[8]
Решив данное уравнение и зная распределение векторного магнитного потенциала по области моделирования, можно найти распределение составляющих вектора магнитной индукции и результирующего значения (модуля) вектора магнитной индукции по выражениям
[9]
Для того чтобы уравнения Лапласа-Пуассона имели единственное решение, они дополняются граничными (краевыми) условиями. На замкнутой границе Г модели ЭУ могут быть заданы следующие краевые условия.
1. Граничные условия первого рода (Дирихле) – на границе Г задается значение искомой функции, т.е. φ = f1 (x, y, z), где точки с декартовыми координатами (x, y, z) принадлежат границе Г. Условие φ = 0 является однородным.
2. Граничные условия второго рода (Неймана). Для них задается изменение искомой функции по нормали n к границе Г, т.е dφ /dn= f2 (x, y, z), где точки с координатами (x, y, z)
принадлежат границе Г. Условие dφ/dn = 0 является однородным.
3. Граничные условия третьего рода dφ /dn + f3 (φ) = f4 (x, y, z), где точки с координатами (x, y, z) принадлежат границе Г.
На границе модели могут быть заданы смешанные краевые условия, т.е. сочетание вышеприведенных – первого, второго и третьего рода.
1.2 Основные положения метода конечных элементов для решения электромагнитных задач