Дипломная работа: Исследование процессов испарения и конденсации жидких капель

где B = const. Распределения такого типа используют весьма широко, но ими также часто злоупотребляют. Поэтому обсудим некоторые их достоинства и недостатки.

• Общее число частиц. Для его определения необходимо вычислить , который расходится при любых a . Если задать нижний предел как rmin (трудности такого шага были обсуждены выше), то получим:

(1.12)

Таким образом, общая концентрация определяется величиной rmin . Для a = 3 рассчитанное общее число частиц возрастает в 8 раз при двукратном уменьшении rmin .

• Средний радиус . Интеграл в этом случае также расходится, поэтому необходимо ввести rmin . Тогда получим:

(1.13)

Если a = 3, то средний радиус близок к rmin . Еслиa = 1, то интеграл расходится и средний радиус неопределим.

• Общий объем частиц . Общий объем частиц задается величиной

(1.14)

которая не определена при a = 3. Хотелось бы отметить, что именно a = 3 было предсказано на основании постоянства ∆V/∆ln(r). Если взять интеграл от rmin до rm ax , то общий объем частиц составит:

. (1.15)

Если a > 3, то получим:

. (1.16)

А если a < 3, то:

. (1.17)

Если rmin много меньше r max ,тогда из уравнения (16) следует, что объем

пропорционален и весьма слабо зависит от rmin . Если a < 3, то общий объем в основном определяется rmin . Следовательно, если состав систематически меняется с изменением размера, то в зависимости от тангенса угла наклона a средний состав аэрозоля будет меняться очень сильно.

• Общая площадь . В некоторых случаях эта характеристика очень важна. В зависимости от того, a < 2 или a > 2, доминируют большие или меньшие частицы. Коэффициент оптической экстинкции в грубом приближении пропорционален площади поверхности частицы вплоть до rmin ≈ 0.5λ, где λ - длина волны. Состав частиц (из оптических измерений) будет определяться концом интервала радиусов для a ≈ 3 (то есть оптическое поведение системы будет определяться размером в десятые доли мкм). Если a < 2, то происходит сдвиг в сторону больших частиц.

1.6.2 Гамма-распределение.

Закон распределения имеет вид:

, (1.18)

он обеспечивает экстремум функции распределения при rextr = b-1 и убывание функции - медленное при уменьшении радиуса и экспоненциально быстрое при r > r extr . Однако теоретическое исследования в области сухих аэрозолей и экспериментальные данные подтверждают, что при r < r extr функция распределения также убывает по экспоненте. Лучшее приближение к экспериментальным данным можно получить, если в качестве аргумента взять обратный радиус или какую-либо другую отрицательную степень.

Такие распределения, известные как гамма - распределения, удобны для машинных расчетов, однако представляют всего лишь удобную аппроксимацию экспериментальных данных и не имеют под собой никакой теоретической основы.

Можно легко получить выражение для определения первого момента гамма - распределения. Если принять, что

, (1.19)

то легко взять интеграл вида

, (1.20)

где Г - соответствующее значение γ-функции:

(1.21)

К-во Просмотров: 242
Бесплатно скачать Дипломная работа: Исследование процессов испарения и конденсации жидких капель