Дипломная работа: Классификация римских цифр на основе нейронных сетей
Сеть, принимая входной вектор, должна в соответствии с ним выдать соответствующий данной последовательности выходной вектор.
Исходя из исходных данных, данная задача относится к классу A- задача классификации.
1.3 Предварительный выбор класса НС
Рассмотрим классификацию искусственных нейронных сетей по Терехову (Управление на основе нейронных сетей). В книге говорится о различиях вычислительных процессов в сетях, частично обусловленных способом взаимосвязи нейронов, поэтому выделяют следующие виды сетей , при помощи которых можно решить данную задачу:
· сети прямого распространения (feedforward);
· сети с обратными связями (feedforward /feedback);
· гибридные сети (fuzzy).
· некоторые модели сетей, основанных на статических методах
Для решения нашей задачи наиболее подходящими классами являются классы статических и динамических сетей, так как первые позволяют довольно эффективно решать достаточно широкий диапазон задач (наиболее известными и используемыми являются многослойные нейронные сети , где искусственные нейроны расположены слоями. ), а вторые из-за обратных связей состояние сети в каждый момент времени зависит от предшествующего состояния, что позволяет эффективно обучать сеть и подстраивать весовые коэффициенты (наиболее известны сети Хопфилда, т. к. в них происходит обучение по обратному распространению ошибок). Также подходят сети, основанные на статических методах (среди них можно выделить вероятностную нейронную сеть). Сети, с помощью которых нельзя решить поставленную задачу: нечёткие структуры (fuzzy), среди которых можно выделить сети («самоорганизующихся карт») Кохонена, а так же сети с «радиальными базисными функциями» активации.
Остановим свой выбор на следующих видах сетей:
· многослойный персептрон
· сети Ворда
· сети Кохонена
· вероятностная нейронная сеть
1.4 Предварительный выбор структуры НС
Понятие структуры НС включает в себя
· Количество слоев,
· Количество нейронов в каждом слое,
· Вид функции активации,
· Обратные связи
Входные данные для всех четырех типов сетей одинаковые, и представляют собой вектора из 0 и 1, полученный в результате деления растрового изображения сеткой 7х9.
Выходные данные для всех сетей кроме сети Кохонена – вектор из нулей и единиц размерности 9, так как число классов равно 9.
Многослойный персептрон, как и сети Ворда, обладает тем большими интеллектуальными способностями, чем больше число связей внутри сети.
Число скрытых нейронов для этих классов сетей определим по формуле:
N скрытых нейронов = 1/2 (Nвходов + Nвыходов) + корень квадратный из количества тренировочных примеров.
Число входных нейронов 63. Число выходных 9. По формуле число скрытых нейронов 48.
Определим число слоев:
Число связей при 1 скрытом слое равно (между слоями каждый нейрон соединен с каждым):
63*48+48*9=3456