Дипломная работа: Классы конечных групп F, замкнутые относительно произведения обобщенно субнормальных F-подгрупп
где , ;
;
--- класс всех минимальных не -групп, т. е. групп не принадлежащих , но все собственные подгруппы которых принадлежат ;
--- класс всех -групп из ;
--- класс всех конечных групп;
--- класс всех разрешимых конечных групп;
--- класс всех -групп;
--- класс всех разрешимых -групп;
--- класс всех разрешимых -групп;
--- класс всех нильпотентных групп;
--- класс всех разрешимых групп с нильпотентной длиной .
Если и --- классы групп, то:
.
Если --- класс групп и --- группа, то:
--- пересечение всех нормальных подгрупп из таких, что ;
--- произведение всех нормальных -подгрупп группы .
Если и --- формации, то:
--- произведение формаций;
--- пересечение всех -абнормальных максимальных подгрупп группы .
Если --- насыщенная формация, то:
--- существенная характеристика формации .
-абнормальной называется максимальная подгруппа группы , если , где --- некоторая непустая формация.
-гиперцентральной подгруппой в называется разрешимая нормальная подгруппа группы , если обладает субнормальным рядом таким, что
(1) каждый фактор является главным фактором группы ;
(2) если порядок фактора есть степень простого числа , то .
--- -гиперцентр группы , т. е. произведение всех -гиперцентральных подгрупп группы .
Введение
Вопросы, посвященные факторизации групп, в теории конечных групп занимают важное место. Под факторизацией конечной группы понимается представление ее в виде произведения некоторых еe подгрупп, взятых в определенном порядке, или попарно перестановочных. Исследуются как способы факторизации заданной группы, так и свойства групп, допускающих ту или иную заданную факторизацию.