Дипломная работа: Максимальные факторизации симплектических групп

3) подгруппа совпадает с каждой своей сопряженной подгруппой, т.е. для всех .

Лемма Пусть - подгруппа группы . Тогда:

1) ;

2) если и , то ;

3) - наибольшая подгруппа группы , в которой нормальна;

4) если , то . Обратно, если , то ;

5) для любого непустого подмножества группы .

В каждой группе тривиальные подгруппы (единичная подгруппа и сама группа ) являются нормальными подгруппами. Если в неединичной группе нет других нормальных подгрупп, то группа называется простой . Единичную группу считают непростой.


Изометрии

Знакопеременные пространства

Векторное пространство над полем называется знакопеременным , если на нем задана знакопеременная билинейная форма , т. е. отображение со следующими свойствами:

для всех , , из и всех из . Отметим следствие этих соотношений:

Если - знакопеременная форма и - произвольный элемент из , то отображение , определенное формулой , также знакопеременно, и сложный объект, являющийся исходным векторным пространством с этой новой формой , будет знакопеременным пространством, которое мы обозначим через .

Представление знакопеременного пространства в знакопеременное пространство (оба над полем и с формами, обозначаемыми через ) есть по определению линейное преобразование пространства в , такое, что для всех , . Инъективное представление называется изометрией в . Пространства и называются изометричными , если существует изометрия на . Пусть обозначает представление, - изометрию ``в'', а или - изометрию ``на''. Очевидно, что композиция двух изометрии - изометрия и преобразование, обратное к изометрии, - также изометрия. В частности, множество изометрий пространства на себя является подгруппой общей линейной группы абстрактного векторного пространства ; она называется симплектической группой знакопеременного пространства и обозначается через . Для любого ненулевого элемента из имеем .

Предложение Пусть - линейное преобразование знакопеременного пространства в знакопеременное пространство . Предположим, что существует база пространства , такая, что для всех , . Тогда -- представление.

Доказательство. Это тривиально следует из определений.

Каждому знакопеременному пространству со знакопеременной формой сопоставим отображения и пространства в сопряженное пространство ( рассматривается как абстрактное векторное пространство над ). По определению отображение сопоставляет произвольному элементу из линейный функционал , определенный формулой , а переводит в . Легко проверяется, что и являются линейными преобразованиями.

- матрица над называется кососимметрической , если , и знакопеременной , если и на главной диагонали стоят нули. Таким образом, знакопеременные матрицы являются кососимметрическими. Обратно, кососимметрические матрицы являются знакопеременными, если характеристика поля не равна . Рассмотрим знакопеременное пространство . Мы можем ассоциировать с базой пространства матрицу, у которой на месте стоит . Назовем матрицей знакопеременного пространства в базе и будем писать


Если существует хотя бы одна база, в которой имеет матрицу , то будем писать . Матрица , ассоциированная со знакопеременным пространством указанным способом, является, очевидно, знакопеременной. Что происходит при изменении базы? Предположим, что в базе и - матрица перехода от первой базы ко второй, т. е.

Тогда

откуда видно, что изменение матрицы пространства при изменении базы описывается соотношением .

Если - абстрактное векторное пространство с базой и - произвольная знакопеременная -матрица над , то существует единственный способ превратить в знакопеременное пространство, такое, что в , а именно, положить

К-во Просмотров: 263
Бесплатно скачать Дипломная работа: Максимальные факторизации симплектических групп