Дипломная работа: Максимальные факторизации симплектических групп
Предложение Предположим, что - знакопеременное пространство, - его база и в . Тогда матричный изоморфизм, определенный базой , отображает на группу всех обратимых -матриц над , удовлетворяющих соотношению
Дискриминантом векторов в знакопеременном пространстве называется определитель
В частности, если - база пространства и в этой базе, то
Если - другая база, то соотношение показывает, что
для некоторого из . Следовательно, канонический образ элемента в не зависит от базы; он называется дискриминантом знакопеременного пространства и обозначается через . Здесь множество определяется очевидным образом: берем факторгруппу , присоединяем к ней нуль 0 и полагаем, что произведение нуля и любого другого элемента равно нулю. Запись , где , будет обозначать, что равно каноническому образу элемента в или, другими словами, что обладает базой , для которой . Если , то полагаем .
Пример Рассмотрим знакопеременное пространство со знакопеременной формой . Пусть - его база, а - сопряженная база сопряженного пространства . Пусть в . Тогда . Легко видеть, что матрица линейного преобразования , определенного ранее, относительно баз и равна ; действительно, если , то
Аналогично матрица преобразования относительно баз и равна .
Предложение Любые векторов знакопеременного пространства , такие, что , линейно независимы.
Доказательство. Зависимость влечет за собой для . Это означает зависимость между строками матрицы , что невозможно, так как дискриминант не равен 0.
Предложение Следующие утверждения для знакопеременного пространства равносильны:
• ,
• ,
• ,
• биективно,
• биективно.
Доказательство. Можно считать, что . Зафиксируем базу пространства , и пусть - сопряженная база. Пусть в . Ввиду
обратима | |
биективно, |
поэтому (3) равносильно (5). Аналогично (3) равносильно (4). Далее
биективно | |
, |
так что (5) равносильно (2). Наконец, очевидно, что (2) равносильно (1).
Определение Знакопеременное пространство называется регулярным, если оно удовлетворяет одному из пяти равносильных условий . Знакопеременное пространство называется вырожденным, если оно не является регулярным. Наконец, оно называется вполне вырожденным, если .
Если , то регулярно. Если , то ввиду и
Предложение Пусть - представление знакопеременных пространств. Если регулярно, то - изометрия.
Доказательство. Возьмем из ядра представления . Тогда . Отсюда ввиду регулярности пространства получаем, что .
Предложение Каждой базе регулярного знакопеременного пространства соответствует единственная база этого пространства, называемая сопряженной к относительно и такая, что для всех , . Если в и в , то .